BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15931245)

  • 1. Consequences of prairie fragmentation on the progeny sex ratio of a gynodioecious species, Lobelia spicata (Campanulaceae).
    Byers DL; Warsaw A; Meagher TR
    Heredity (Edinb); 2005 Jul; 95(1):69-75. PubMed ID: 15931245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex ratio variation in gynodioecious Lobelia siphilitica: effects of population size and geographic location.
    Caruso CM; Case AL
    J Evol Biol; 2007 Jul; 20(4):1396-405. PubMed ID: 17584234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of prairie fragment size on proportion of females and reproductive success of Lobelia spicata Lam., a gynodioecious species.
    Byers DL
    Plant Biol (Stuttg); 2020 Mar; 22(2):137-145. PubMed ID: 31618510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Offspring sex ratio under inbreeding and outbreeding in a gynodioecious plant.
    Bailey MF; McCauley DE
    Evolution; 2005 Feb; 59(2):287-95. PubMed ID: 15807415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing models of sex ratio evolution in a gynodioecious plant: female frequency covaries with the cost of male fertility restoration.
    Caruso CM; Case AL
    Evolution; 2013 Feb; 67(2):561-6. PubMed ID: 23356626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation.
    Honnay O; Jacquemyn H
    Conserv Biol; 2007 Jun; 21(3):823-31. PubMed ID: 17531059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex ratio variation among gynodioecious populations of sea beet: can it be explained by negative frequency-dependent selection?
    Dufay M; Cuguen J; Arnaud JF; Touzet P
    Evolution; 2009 Jun; 63(6):1483-97. PubMed ID: 19222569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental test of the effects of resources and sex ratio on maternal fitness and phenotypic selection in gynodioecious Fragaria virginiana.
    Case AL; Ashman TL
    Evolution; 2007 Aug; 61(8):1900-11. PubMed ID: 17683432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling gynodioecy: novel scenarios for maintaining polymorphism.
    Bailey MF; Delph LF; Lively CM
    Am Nat; 2003 May; 161(5):762-76. PubMed ID: 12858283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond balancing selection: frequent mitochondrial recombination contributes to high-female frequencies in gynodioecious Lobelia siphilitica (Campanulaceae).
    Adhikari B; Caruso CM; Case AL
    New Phytol; 2019 Nov; 224(3):1381-1393. PubMed ID: 31442304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced recombination in gynodioecious populations of a facultative apomictic orchid.
    Lu Y; Luo YB; Huang SQ
    Plant Biol (Stuttg); 2010 Sep; 12(5):814-9. PubMed ID: 20701706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter simple sequence repeat (ISSR) based analysis of genetic diversity of Lobelia rhynchopetalum (Campanulaceae).
    Geleta M; Bryngelsson T
    Hereditas; 2009 Jun; 146(3):122-30. PubMed ID: 19712223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic structure and early effects of inbreeding in fragmented temperate forests of a self-incompatible tree, Embothrium coccineum.
    Mathiasen P; Rovere AE; Premoli AC
    Conserv Biol; 2007 Feb; 21(1):232-40. PubMed ID: 17298529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fitness effects of outcrossing in Calylophus serrulatus, a permanent translocation heterozygote.
    Heiser DA; Shaw RG
    Evolution; 2006 Jan; 60(1):64-76. PubMed ID: 16568632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach to estimating the cost of male fertility restoration in gynodioecious plants.
    Case AL; Caruso CM
    New Phytol; 2010 Apr; 186(2):549-57. PubMed ID: 20180910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation.
    Vranckx G; Jacquemyn H; Muys B; Honnay O
    Conserv Biol; 2012 Apr; 26(2):228-37. PubMed ID: 22044646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of female frequency and cytoplasmic male-sterility gene frequency among natural gynodioecious populations of wild radish (Raphanus sativus L.).
    Murayama K; Yahara T; Terachi T
    Mol Ecol; 2004 Aug; 13(8):2459-64. PubMed ID: 15245417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches.
    Aguilar R; Quesada M; Ashworth L; Herrerias-Diego Y; Lobo J
    Mol Ecol; 2008 Dec; 17(24):5177-88. PubMed ID: 19120995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cost of restoration of male fertility in a gynodioecious species, Lobelia siphilitica.
    Bailey MF
    Evolution; 2002 Nov; 56(11):2178-86. PubMed ID: 12487348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do Genetic Drift and Gene Flow Affect the Geographic Distribution of Female Plants in Gynodioecious
    Appiah-Madson HJ; Knox EB; Caruso CM; Case AL
    Plants (Basel); 2022 Mar; 11(6):. PubMed ID: 35336707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.