BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 15931513)

  • 1. Chronic changes in cerebrospinal fluid pathways produced by subarachnoid kaolin injection and experimental spinal cord trauma in the rabbit: their relationship with the development of spinal deformity. An electron microscopic study and magnetic resonance imaging evaluation.
    Turgut M; Cullu E; Uysal A; Yurtseven ME; Alparslan B
    Neurosurg Rev; 2005 Oct; 28(4):289-97. PubMed ID: 15931513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Hypodynamic Change of Cerebrospinal Fluid Flow as A Potential Factor Working for Experimental Scoliotic Formation.
    Zhao Z; Li T; Bi N; Shi Z; Zhang Y; Li Q; Wang Y; Xie J
    Sci Rep; 2020 Apr; 10(1):6821. PubMed ID: 32321986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-hindbrain-related syringomyelia. Obstruction of the subarachnoid space and the central canal in rats. An experimental study.
    Cosan TE; Tel E; Durmaz R; Gülec S; Baycu C
    J Neurosurg Sci; 2000 Sep; 44(3):123-7. PubMed ID: 11126445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental syringomyelia: late ultrastructural changes of spinal cord tissue and magnetic resonance imaging evaluation.
    Chakrabortty S; Tamaki N; Ehara K; Takahashi A; Ide C
    Surg Neurol; 1997 Sep; 48(3):246-54. PubMed ID: 9290711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebrospinal fluid flow in an animal model of noncommunicating syringomyelia.
    Stoodley MA; Gutschmidt B; Jones NR
    Neurosurgery; 1999 May; 44(5):1065-75; discussion 1075-6. PubMed ID: 10232540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus.
    Voelz K; Kondziella D; von Rautenfeld DB; Brinker T; Lüdemann W
    Acta Neuropathol; 2007 May; 113(5):569-75. PubMed ID: 17295026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental syringohydromyelia induced by adhesive arachnoiditis in the rabbit: changes in the blood-spinal cord barrier, neuroinflammatory foci, and syrinx formation.
    Kobayashi S; Kato K; Rodríguez Guerrero A; Baba H; Yoshizawa H
    J Neurotrauma; 2012 Jun; 29(9):1803-16. PubMed ID: 22439613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of iloprost on vasospasm after experimental spinal cord injury: an electron and light microscopic study.
    Attar A; Tuna H; Ugur HC; Sargon MF; Egemen N
    Neurol Res; 2001 Dec; 23(8):843-50. PubMed ID: 11760876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitotoxic model of post-traumatic syringomyelia in the rat.
    Yang L; Jones NR; Stoodley MA; Blumbergs PC; Brown CJ
    Spine (Phila Pa 1976); 2001 Sep; 26(17):1842-9. PubMed ID: 11568692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual deformity of the spinal canal in patients with traumatic paraplegia and secondary changes of the spinal cord.
    Abel R; Gerner HJ; Smit C; Meiners T
    Spinal Cord; 1999 Jan; 37(1):14-9. PubMed ID: 10025689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-absorption responses to the infusion of fluid into the spinal cord central canal of kaolin-hydrocephalic cats.
    Nakamura S; Camins MB; Hochwald GM
    J Neurosurg; 1983 Feb; 58(2):198-203. PubMed ID: 6848676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopic study of the progeny of ependymal stem cells in the normal and injured spinal cord.
    Attar A; Kaptanoglu E; Aydin Z; Ayten M; Sargon MF
    Surg Neurol; 2005; 64 Suppl 2():S28-32. PubMed ID: 16256837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental model of posttraumatic syringomyelia: the role of adhesive arachnoiditis in syrinx formation.
    Cho KH; Iwasaki Y; Imamura H; Hida K; Abe H
    J Neurosurg; 1994 Jan; 80(1):133-9. PubMed ID: 8270999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Experimental syringomyelia in rabbits and rats after localized spinal arachnoiditis].
    Tatara N
    No To Shinkei; 1992 Dec; 44(12):1115-25. PubMed ID: 1296732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rat in experimental obstructive hydrocephalus.
    Hochwald GM; Nakamura S; Camins MB
    Z Kinderchir; 1981 Dec; 34(4):403-10. PubMed ID: 7331547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spinal cord central canal in kaolin-induced hydrocephalus.
    Torvik A; Murthy VS
    J Neurosurg; 1977 Sep; 47(3):397-402. PubMed ID: 894343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of extradural constriction on CSF flow in rat spinal cord.
    Berliner JA; Woodcock T; Najafi E; Hemley SJ; Lam M; Cheng S; Bilston LE; Stoodley MA
    Fluids Barriers CNS; 2019 Mar; 16(1):7. PubMed ID: 30909935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental syringomyelia in the rabbit: an ultrastructural study of the spinal cord tissue.
    Chakrabortty S; Tamaki N; Ehara K; Ide C
    Neurosurgery; 1994 Dec; 35(6):1112-20. PubMed ID: 7885556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormalities in spinal cord ultrastructure in a rat model of post-traumatic syringomyelia.
    Berliner J; Hemley S; Najafi E; Bilston L; Stoodley M; Lam M
    Fluids Barriers CNS; 2020 Feb; 17(1):11. PubMed ID: 32111246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cerebrospinal fluid pathways and their significance for the compensation of kaolin-hydrocephalus.
    Luedemann W; Kondziella D; Tienken K; Klinge P; Brinker T; Berens von Rautenfeld D
    Acta Neurochir Suppl; 2002; 81():271-3. PubMed ID: 12168324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.