These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15931886)

  • 21. Fitting semiparametric random effects models to large data sets.
    Pennell ML; Dunson DB
    Biostatistics; 2007 Oct; 8(4):821-34. PubMed ID: 17429104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A preliminary study of active compared with passive imputation of missing body mass index values among non-Hispanic white youths.
    Wagstaff DA; Kranz S; Harel O
    Am J Clin Nutr; 2009 Apr; 89(4):1025-30. PubMed ID: 19244364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multilevel analysis with messy data.
    Longford NT
    Stat Methods Med Res; 2001 Dec; 10(6):429-44. PubMed ID: 11763551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imputation-based strategies for clinical trial longitudinal data with nonignorable missing values.
    Yang X; Li J; Shoptaw S
    Stat Med; 2008 Jul; 27(15):2826-49. PubMed ID: 18205247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Examining solutions to missing data in longitudinal nursing research.
    Roberts MB; Sullivan MC; Winchester SB
    J Spec Pediatr Nurs; 2017 Apr; 22(2):. PubMed ID: 28425202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accounting for uncertainty due to 'last observation carried forward' outcome imputation in a meta-analysis model.
    Dimitrakopoulou V; Efthimiou O; Leucht S; Salanti G
    Stat Med; 2015 Feb; 34(5):742-52. PubMed ID: 25492741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Introduction to multiple imputation for dealing with missing data.
    Lee KJ; Simpson JA
    Respirology; 2014 Feb; 19(2):162-167. PubMed ID: 24372814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual imputation model for incomplete longitudinal data.
    Jolani S; Frank LE; van Buuren S
    Br J Math Stat Psychol; 2014 May; 67(2):197-212. PubMed ID: 23909566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Missing data and imputation: a practical illustration in a prognostic study on low back pain.
    Vergouw D; Heymans MW; van der Windt DA; Foster NE; Dunn KM; van der Horst HE; de Vet HC
    J Manipulative Physiol Ther; 2012 Jul; 35(6):464-71. PubMed ID: 22964020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methods for using data abstracted from medical charts to impute longitudinal missing data in a clinical trial.
    Hebert PL; Taylor LT; Wang JJ; Bergman MA
    Value Health; 2011 Dec; 14(8):1085-91. PubMed ID: 22152178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple imputation in the presence of high-dimensional data.
    Zhao Y; Long Q
    Stat Methods Med Res; 2016 Oct; 25(5):2021-2035. PubMed ID: 24275026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fallacies of last observation carried forward analyses.
    Lachin JM
    Clin Trials; 2016 Apr; 13(2):161-8. PubMed ID: 26400875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple imputation of missing values was not necessary before performing a longitudinal mixed-model analysis.
    Twisk J; de Boer M; de Vente W; Heymans M
    J Clin Epidemiol; 2013 Sep; 66(9):1022-8. PubMed ID: 23790725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The analysis of record-linked data using multiple imputation with data value priors.
    Goldstein H; Harron K; Wade A
    Stat Med; 2012 Dec; 31(28):3481-93. PubMed ID: 22807145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A note on dealing with missing standard errors in meta-analyses of continuous outcome measures in WinBUGS.
    Stevens JW
    Pharm Stat; 2011; 10(4):374-8. PubMed ID: 21394888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Treatment of nonignorable missing data when modeling unobserved heterogeneity with finite mixture models.
    Lehmann T; Schlattmann P
    Biom J; 2017 Jan; 59(1):159-171. PubMed ID: 27804147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cumulative sojourn time in longitudinal studies: a sequential imputation method to handle missing health state data due to dropout.
    Li X; Liu J; Duan N; Jiang H; Girgis R; Lieberman J
    Stat Med; 2014 May; 33(12):2030-47. PubMed ID: 24918241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of methods for imputing ordinal data using multivariate normal imputation: a case study of non-linear effects in a large cohort study.
    Lee KJ; Galati JC; Simpson JA; Carlin JB
    Stat Med; 2012 Dec; 31(30):4164-74. PubMed ID: 22826110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple imputation in veterinary epidemiological studies: a case study and simulation.
    Dohoo IR; Nielsen CR; Emanuelson U
    Prev Vet Med; 2016 Jul; 129():35-47. PubMed ID: 27317321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the reliability of NMR relaxation data analyses: a Markov Chain Monte Carlo approach.
    Abergel D; Volpato A; Coutant EP; Polimeno A
    J Magn Reson; 2014 Sep; 246():94-103. PubMed ID: 25117152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.