These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1593210)

  • 1. The renal sodium-calcium exchanger.
    Dominguez JH; Juhaszova M; Feister HA
    J Lab Clin Med; 1992 Jun; 119(6):640-9. PubMed ID: 1593210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)-Ca2+ exchanger of rat proximal tubule: gene expression and subcellular localization.
    Dominguez JH; Juhaszova M; Kleiboeker SB; Hale CC; Feister HA
    Am J Physiol; 1992 Nov; 263(5 Pt 2):F945-50. PubMed ID: 1443182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman's syndrome.
    Loffing J; Vallon V; Loffing-Cueni D; Aregger F; Richter K; Pietri L; Bloch-Faure M; Hoenderop JG; Shull GE; Meneton P; Kaissling B
    J Am Soc Nephrol; 2004 Sep; 15(9):2276-88. PubMed ID: 15339977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active lucifer yellow secretion in renal proximal tubule: evidence for organic anion transport system crossover.
    Masereeuw R; Moons MM; Toomey BH; Russel FG; Miller DS
    J Pharmacol Exp Ther; 1999 May; 289(2):1104-11. PubMed ID: 10215693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypertrophy of basolateral Na-K pump activity in the proximal tubule of the remnant kidney.
    Salehmoghaddam S; Bradley T; Mikhail N; Badie-Dezfooly B; Nord EP; Trizna W; Kheyfets R; Fine LG
    Lab Invest; 1985 Oct; 53(4):443-52. PubMed ID: 2413277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ionomycin on cell pH in isolated renal proximal tubules.
    Yamada H; Seki G; Taniguchi S; Uwatoko S; Suzuki K; Kurokawa K
    Biochem Biophys Res Commun; 1996 Aug; 225(1):215-8. PubMed ID: 8769120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of digitalis glycosides to identify the mechanisms of amantadine transport by renal tubules.
    Escobar MR; Sitar DS
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1189-94. PubMed ID: 8667177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of vitamin D depletion on calcium transport by the luminal and basolateral membranes of the proximal and distal nephrons.
    Bouhtiauy I; Lajeunesse D; Brunette MG
    Endocrinology; 1993 Jan; 132(1):115-20. PubMed ID: 8419116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na/H antiporter mRNA expression in single nephron segments of rat kidney cortex.
    Krapf R; Solioz M
    J Clin Invest; 1991 Sep; 88(3):783-8. PubMed ID: 1653275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for differential regulation of renal proximal tubular p-aminohippurate and sodium-dependent dicarboxylate transport.
    Gabriëls G; Werners A; Mauss S; Greven J
    J Pharmacol Exp Ther; 1999 Aug; 290(2):710-5. PubMed ID: 10411582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium entry pathways in renal epithelial cell lines.
    Saier MH; Boerner P; Grenier FC; McRoberts JA; Rindler MJ; Taub M; U HS
    Miner Electrolyte Metab; 1986; 12(1):42-50. PubMed ID: 2421147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation of ischemia/reperfusion-induced renal injury in mice deficient in Na+/Ca2+ exchanger.
    Yamashita J; Kita S; Iwamoto T; Ogata M; Takaoka M; Tazawa N; Nishikawa M; Wakimoto K; Shigekawa M; Komuro I; Matsumura Y
    J Pharmacol Exp Ther; 2003 Jan; 304(1):284-93. PubMed ID: 12490603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for distal tubular inhibition of calcium efflux by nisoldipine in the SHR rat.
    Kauker ML; Zawada ET; Kauker LM; Roman RJ; Rosivall L
    Exp Nephrol; 1997; 5(5):384-9. PubMed ID: 9386974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracer microinjection study of renal tubular phosphate reabsorption in the rat.
    Staum BB; Hamburger RJ; Goldberg M
    J Clin Invest; 1972 Sep; 51(9):2271-6. PubMed ID: 4639013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential role of cytoplasmic calcium ions in the regulation of sodium transport in renal tubules.
    Frindt G; Lee CO; Yang JM; Windhager EE
    Miner Electrolyte Metab; 1988; 14(1):40-7. PubMed ID: 3279295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the thiazide-sensitive Na-Cl cotransporter by rabbit distal convoluted tubule cells.
    Bachmann S; Velázquez H; Obermüller N; Reilly RF; Moser D; Ellison DH
    J Clin Invest; 1995 Nov; 96(5):2510-4. PubMed ID: 7593642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+ electrochemical gradient and Na+-Ca2+ exchange in rat proximal tubule.
    Dominguez JH; Rothrock JK; Macias WL; Price J
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F531-8. PubMed ID: 2679143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypertension and renal calcium transport.
    Petrazzuolo O; Trepiccione F; Zacchia M; Capasso G
    J Nephrol; 2010; 23 Suppl 16():S112-7. PubMed ID: 21170867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide production by mouse renal tubules can be increased by a sodium-dependent mechanism.
    Kempson S; Thompson N; Pezzuto L; Glenn Bohlen H
    Nitric Oxide; 2007 Aug; 17(1):33-43. PubMed ID: 17604190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dibutryladenosine 3',5'-cyclic monophosphate (dBcAMP) does not mimic the action of parathyroid hormone (PTH) on canine proximal tubular basolateral membrane Na+:Ca2+.
    Scoble JE; Moskowitz D; Hruska KA
    Adv Exp Med Biol; 1986; 208():537-41. PubMed ID: 3031954
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.