BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15933031)

  • 1. Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase from Bacillus megaterium IWG3 on stabilization of its oligomeric state.
    Baik SH; Michel F; Aghajari N; Haser R; Harayama S
    Appl Environ Microbiol; 2005 Jun; 71(6):3285-93. PubMed ID: 15933031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significantly enhanced stability of glucose dehydrogenase by directed evolution.
    Baik SH; Ide T; Yoshida H; Kagami O; Harayama S
    Appl Microbiol Biotechnol; 2003 May; 61(4):329-35. PubMed ID: 12743762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030.
    Nagao T; Mitamura T; Wang XH; Negoro S; Yomo T; Urabe I; Okada H
    J Bacteriol; 1992 Aug; 174(15):5013-20. PubMed ID: 1629157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic properties of isozymes and variants of glucose dehydrogenase from Bacillus megaterium.
    Mitamura T; Urabe I; Okada H
    Eur J Biochem; 1989 Dec; 186(1-2):389-93. PubMed ID: 2513190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of glucose dehydrogenase from Bacillus megaterium IWG3 at 1.7 A resolution.
    Yamamoto K; Kurisu G; Kusunoki M; Tabata S; Urabe I; Osaki S
    J Biochem; 2001 Feb; 129(2):303-12. PubMed ID: 11173533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability-increasing mutants of glucose dehydrogenase from Bacillus megaterium IWG3.
    Makino Y; Negoro S; Urabe I; Okada H
    J Biol Chem; 1989 Apr; 264(11):6381-5. PubMed ID: 2495285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization and preliminary X-ray analysis of glucose dehydrogenase from Bacillus megaterium IWG3.
    Yamamoto K; Kusunoki M; Urabe I; Tabata S; Osaki S
    Acta Crystallogr D Biol Crystallogr; 2000 Nov; 56(Pt 11):1443-5. PubMed ID: 11053846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing stability of water-soluble PQQ glucose dehydrogenase by increasing hydrophobic interaction at dimeric interface.
    Tanaka S; Igarashi S; Ferri S; Sode K
    BMC Biochem; 2005 Feb; 6():1. PubMed ID: 15715904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneously improving stability and specificity of cell surface displayed glucose dehydrogenase mutants to construct whole-cell biocatalyst for glucose biosensor application.
    Liang B; Lang Q; Tang X; Liu A
    Bioresour Technol; 2013 Nov; 147():492-498. PubMed ID: 24012845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose dehydrogenase from Bacillus subtilis expressed in Escherichia coli. I: Purification, characterization and comparison with glucose dehydrogenase from Bacillus megaterium.
    Hilt W; Pfleiderer G; Fortnagel P
    Biochim Biophys Acta; 1991 Jan; 1076(2):298-304. PubMed ID: 1900201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system.
    Kataoka M; Sri Rohani LP; Wada M; Kita K; Yanase H; Urabe I; Shimizu S
    Biosci Biotechnol Biochem; 1998 Jan; 62(1):167-9. PubMed ID: 9501530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence homologies of glucose-dehydrogenases of Bacillus megaterium and Bacillus subtilis.
    Fortnagel P; Lampel KA; Neitzke KD; Freese E
    J Theor Biol; 1986 Jun; 120(4):489-97. PubMed ID: 3099087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site.
    Ghollasi M; Ghanbari-Safari M; Khajeh K
    Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and site-directed mutagenesis of an α-galactosidase from the deep-sea bacterium Bacillus megaterium.
    Xu H; Qin Y; Huang Z; Liu Z
    Enzyme Microb Technol; 2014 Mar; 56():46-52. PubMed ID: 24564902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. His68 and His141 are critical contributors to the intersubunit catalytic site of adenylosuccinate lyase of Bacillus subtilis.
    Lee TT; Worby C; Bao ZQ; Dixon JE; Colman RF
    Biochemistry; 1999 Jan; 38(1):22-32. PubMed ID: 9890879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability-increasing mutants of glucose dehydrogenase.
    Nagao T; Makino Y; Yamamoto K; Urabe I; Okada H
    FEBS Lett; 1989 Aug; 253(1-2):113-6. PubMed ID: 2503396
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification and isolation of glucose dehydrogenase genes of Bacillus megaterium M1286 and their expression in Escherichia coli.
    Heilmann HJ; Mägert HJ; Gassen HG
    Eur J Biochem; 1988 Jun; 174(3):485-90. PubMed ID: 3134196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic interactions across the dimer-dimer interface contribute to the pH-dependent stability of a tetrameric malate dehydrogenase.
    Bjørk A; Mantzilas D; Sirevåg R; Eijsink VG
    FEBS Lett; 2003 Oct; 553(3):423-6. PubMed ID: 14572663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability.
    Martin DC; Pastra-Landis SC; Kantrowitz ER
    Protein Sci; 1999 May; 8(5):1152-9. PubMed ID: 10338026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Glucose Dehydrogenase for Cofactor Regeneration in Bioredox Processes with Denaturing Agents.
    Qian WZ; Ou L; Li CX; Pan J; Xu JH; Chen Q; Zheng GW
    Chembiochem; 2020 Sep; 21(18):2680-2688. PubMed ID: 32324965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.