These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 15933150)
1. Using simple mathematical functions to simulate pathological structures--input for digital mammography clinical trial. Ruschin M; Tingberg A; Båth M; Grahn A; Håkansson M; Hemdal B; Andersson I Radiat Prot Dosimetry; 2005; 114(1-3):424-31. PubMed ID: 15933150 [TBL] [Abstract][Full Text] [Related]
2. Dual-energy digital mammography for calcification imaging: scatter and nonuniformity corrections. Kappadath SC; Shaw CC Med Phys; 2005 Nov; 32(11):3395-408. PubMed ID: 16372415 [TBL] [Abstract][Full Text] [Related]
3. AEC for scanning digital mammography based on variation of scan velocity. Aslund M; Cederström B; Lundqvist M; Danielsson M Med Phys; 2005 Nov; 32(11):3367-74. PubMed ID: 16370424 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a novel method of noise reduction using computer-simulated mammograms. Tischenko O; Hoeschen C; Dance DR; Hunt RA; Maidment AD; Bakic PR Radiat Prot Dosimetry; 2005; 114(1-3):81-4. PubMed ID: 15933085 [TBL] [Abstract][Full Text] [Related]
5. Calculation of the properties of digital mammograms using a computer simulation. Hunt RA; Dance DR; Bakic PR; Maidment AD; Sandborg M; Ullman G; Alm Carlsson G Radiat Prot Dosimetry; 2005; 114(1-3):395-8. PubMed ID: 15933144 [TBL] [Abstract][Full Text] [Related]
6. Objective assessment of image quality in conventional and digital mammography taking into account dynamic range. Pachoud M; Lepori D; Valley JF; Verdun FR Radiat Prot Dosimetry; 2005; 114(1-3):380-2. PubMed ID: 15933141 [TBL] [Abstract][Full Text] [Related]
7. Visibility of simulated microcalcifications--a hardcopy-based comparison of three mammographic systems. Lai CJ; Shaw CC; Whitman GJ; Johnston DA; Yang WT; Selinko V; Arribas E; Dogan B; Kappadath SC Med Phys; 2005 Jan; 32(1):182-94. PubMed ID: 15719969 [TBL] [Abstract][Full Text] [Related]
8. Monte Carlo simulation of a mammographic test phantom. Hunt RA; Dance DR; Pachoud M; Alm Carlsson G; Sandborg M; Ullman G; Verdun FR Radiat Prot Dosimetry; 2005; 114(1-3):432-5. PubMed ID: 15933151 [TBL] [Abstract][Full Text] [Related]
9. A quantitative method for evaluating the detectability of lesions in digital mammography. Zanca F; Van Ongeval C; Jacobs J; Marchal G; Bosmans H Radiat Prot Dosimetry; 2008; 129(1-3):214-8. PubMed ID: 18319282 [TBL] [Abstract][Full Text] [Related]
10. A high-resolution voxel phantom of the breast for dose calculations in mammography. Hoeschen C; Fill U; Zankl M; Panzer W; Regulla D; Döhring W Radiat Prot Dosimetry; 2005; 114(1-3):406-9. PubMed ID: 15933147 [TBL] [Abstract][Full Text] [Related]
11. Validation of a digital mammographic unit model for an objective and highly automated clinical image quality assessment. Perez-Ponce H; Daul C; Wolf D; Noel A Med Eng Phys; 2013 Aug; 35(8):1089-96; discussion 1089. PubMed ID: 23207102 [TBL] [Abstract][Full Text] [Related]
12. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit. Rosado-Méndez I; Palma BA; Brandan ME Med Phys; 2008 Dec; 35(12):5544-57. PubMed ID: 19175112 [TBL] [Abstract][Full Text] [Related]
13. Impact of compressed breast thickness and dose on lesion detectability in digital mammography: FROC study with simulated lesions in real mammograms. Salvagnini E; Bosmans H; Van Ongeval C; Van Steen A; Michielsen K; Cockmartin L; Struelens L; Marshall NW Med Phys; 2016 Sep; 43(9):5104. PubMed ID: 27587041 [TBL] [Abstract][Full Text] [Related]
14. Diffusion equations with negentropy applied to denoise mammographic images. Mayo P; Rodenas F; Ginestar D; Verdú G; Miró R Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4751-4. PubMed ID: 17946261 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of a simulation procedure to study the visibility of micro calcifications in digital mammograms. Carton AK; Bosmans H; Van Ongeval C; Souverijns G; Rogge F; Van Steen A; Marchal G Med Phys; 2003 Aug; 30(8):2234-40. PubMed ID: 12945989 [TBL] [Abstract][Full Text] [Related]
16. Can the average glandular dose in routine digital mammography screening be reduced? A pilot study using revised image quality criteria. Hemdal B; Andersson I; Grahn A; Håkansson M; Ruschin M; Thilander-Klang A; Båth M; Börjesson S; Medin J; Tingberg A; Månsson LG; Mattsson S Radiat Prot Dosimetry; 2005; 114(1-3):383-8. PubMed ID: 15933142 [TBL] [Abstract][Full Text] [Related]
17. The relationship between anatomic noise and volumetric breast density for digital mammography. Mainprize JG; Tyson AH; Yaffe MJ Med Phys; 2012 Aug; 39(8):4660-8. PubMed ID: 22894390 [TBL] [Abstract][Full Text] [Related]
18. Effect of dose reduction on the detection of mammographic lesions: a mathematical observer model analysis. Chawla AS; Samei E; Saunders R; Abbey C; Delong D Med Phys; 2007 Aug; 34(8):3385-98. PubMed ID: 17879801 [TBL] [Abstract][Full Text] [Related]
19. Segmentation for the enhancement of microcalcifications in digital mammograms. Milosevic M; Jankovic D; Peulic A Technol Health Care; 2014; 22(5):701-15. PubMed ID: 25059254 [TBL] [Abstract][Full Text] [Related]
20. A framework for optimising the radiographic technique in digital X-ray imaging. Samei E; Dobbins JT; Lo JY; Tornai MP Radiat Prot Dosimetry; 2005; 114(1-3):220-9. PubMed ID: 15933112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]