BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 15934392)

  • 1. A semi-active milling procedure in view of preparing implantation beds in robot-assisted orthopaedic surgery.
    Van Ham G; Denis K; Vander Sloten J; Van Audekercke R; Van der Perre G; De Schutter J; Simon JP; Fabry G
    Proc Inst Mech Eng H; 2005 May; 219(3):163-74. PubMed ID: 15934392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dimensional accuracy for preparation of the femoral cavity in HIP arthroplasty. A comparison between manual- and robot-assisted implantation of hip endoprosthesis stems in cadaver femurs.
    Prymka M; Wu L; Hahne HJ; Koebke J; Hassenpflug J
    Arch Orthop Trauma Surg; 2006 Jan; 126(1):36-44. PubMed ID: 16341537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Primary rotatory stability of hip endoprostheses stems after manual and robot assisted implantation].
    Prymka M; Vogiatzis M; Hassenpflug J
    Z Orthop Ihre Grenzgeb; 2004; 142(3):303-8. PubMed ID: 15250002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary application of computer-assisted patient-specific acetabular navigational template for total hip arthroplasty in adult single development dysplasia of the hip.
    Zhang YZ; Chen B; Lu S; Yang Y; Zhao JM; Liu R; Li YB; Pei GX
    Int J Med Robot; 2011 Dec; 7(4):469-74. PubMed ID: 22113980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel passive/active hybrid robot for orthopaedic trauma surgery.
    Kuang S; Leung KS; Wang T; Hu L; Chui E; Liu W; Wang Y
    Int J Med Robot; 2012 Dec; 8(4):458-67. PubMed ID: 22791563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The primary stability between manual and robot assisted implantation of hip prostheses: A biomechanical study on synthetic femurs].
    Decking J; Gerber A; Kränzlein J; Meurer A; Böhm B; Plitz W
    Z Orthop Ihre Grenzgeb; 2004; 142(3):309-13. PubMed ID: 15250003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision surgery.
    Dorr LD; Deshmane P
    Orthopedics; 2009 Sep; 32(9):. PubMed ID: 19751022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cutting tool system to minimize soft tissue damage for robot-assisted minimally invasive orthopedic surgery.
    Sugita N; Nakajima Y; Mitsuishi M; Kawata S; Fujiwara K; Abe N; Ozaki T; Suzuki M
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):994-1001. PubMed ID: 18051155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Primary rotatory stability of robot-assisted and manually implanted hip endoprosthesis stems].
    Prymka M; Vogiatzis M; Hassenpflug J
    Unfallchirurg; 2004 Apr; 107(4):285-93. PubMed ID: 14999372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-assisted total hip arthroplasty: coding the next generation of navigation systems for orthopedic surgery.
    Renkawitz T; Tingart M; Grifka J; Sendtner E; Kalteis T
    Expert Rev Med Devices; 2009 Sep; 6(5):507-14. PubMed ID: 19751123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty.
    Sugano N
    Clin Orthop Surg; 2013 Mar; 5(1):1-9. PubMed ID: 23467021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-assisted hip resurfacing surgery using the acrobot navigation system.
    Barrett AR; Davies BL; Gomes MP; Harris SJ; Henckel J; Jakopec M; Kannan V; Rodriguez y Baena FM; Cobb JP
    Proc Inst Mech Eng H; 2007 Oct; 221(7):773-85. PubMed ID: 18019464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
    Cruces RA; Wahrburg J
    Int J Med Robot; 2007 Dec; 3(4):316-22. PubMed ID: 17948919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and implementation of a control architecture for robot-assisted orthopaedic surgery.
    Barkana DE
    Int J Med Robot; 2010 Mar; 6(1):42-56. PubMed ID: 19943336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Laser-based quality assurance for robot-assisted milling at the base of the skull].
    Maassen MM; Malthan D; Stallkamp J; Schäfer A; Dammann F; Schwaderer E; Zenner HP
    HNO; 2006 Feb; 54(2):105-11. PubMed ID: 15977039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot- and computer-assisted craniotomy (CRANIO): from active systems to synergistic man-machine interaction.
    Cunha-Cruz V; Follmann A; Popovic A; Bast P; Wu T; Heger S; Engelhardt M; Schmieder K; Radermacher K
    Proc Inst Mech Eng H; 2010; 224(3):441-52. PubMed ID: 20408489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures.
    Schulz AP; Seide K; Queitsch C; von Haugwitz A; Meiners J; Kienast B; Tarabolsi M; Kammal M; Jürgens C
    Int J Med Robot; 2007 Dec; 3(4):301-6. PubMed ID: 18000945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of force feedback from each DOF on the motion accuracy of a surgical tool in performing a robot-assisted tracing task.
    Samad MD; Hu Y; Sutherland GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2093-6. PubMed ID: 21095684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biplanar robot navigation system for the distal locking of intramedullary nails.
    Lei H; Sheng L; Manyi W; Junqiang W; Wenyong L
    Int J Med Robot; 2010 Mar; 6(1):61-5. PubMed ID: 20014152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic systems in orthopaedic surgery.
    Lang JE; Mannava S; Floyd AJ; Goddard MS; Smith BP; Mofidi A; Seyler TM; Jinnah RH
    J Bone Joint Surg Br; 2011 Oct; 93(10):1296-9. PubMed ID: 21969424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.