BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15934397)

  • 1. Development of a shape memory alloy multiple-point injector for chemotherapy.
    Xu W; Frank TG; Cuschieri A
    Proc Inst Mech Eng H; 2005 May; 219(3):213-7. PubMed ID: 15934397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design optimization study of a shape memory alloy active needle for biomedical applications.
    Konh B; Honarvar M; Hutapea P
    Med Eng Phys; 2015 May; 37(5):469-77. PubMed ID: 25782329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microneedle insertion force reduction using vibratory actuation.
    Yang M; Zahn JD
    Biomed Microdevices; 2004 Sep; 6(3):177-82. PubMed ID: 15377826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force.
    Davis SP; Landis BJ; Adams ZH; Allen MG; Prausnitz MR
    J Biomech; 2004 Aug; 37(8):1155-63. PubMed ID: 15212920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the mechanical properties of human skin to optimise future microneedle device design.
    Groves RB; Coulman SA; Birchall JC; Evans SL
    Comput Methods Biomech Biomed Engin; 2012; 15(1):73-82. PubMed ID: 21749225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heating properties of developed needle type applicator made of shape memory alloy.
    Kanazawa Y; Kato K; Yabuhara T; Miyata R; Uzuka T; Takahashi H; Fujii Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1495-8. PubMed ID: 18002250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous on-chip micropumping for microneedle enhanced drug delivery.
    Zahn JD; Deshmukh A; Pisano AP; Liepmann D
    Biomed Microdevices; 2004 Sep; 6(3):183-90. PubMed ID: 15377827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo characterization of MEMS microneedles.
    Teo MA; Shearwood C; Ng KC; Lu J; Moochhala S
    Biomed Microdevices; 2005 Mar; 7(1):47-52. PubMed ID: 15834520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Lorentz-force actuated autoloading needle-free injector.
    Hemond BD; Wendell DM; Hogan NC; Taberner AJ; Hunter IW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():679-82. PubMed ID: 17945993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical microneedle injection of methyl nicotinate: stratum corneum penetration.
    Sivamani RK; Stoeber B; Wu GC; Zhai H; Liepmann D; Maibach H
    Skin Res Technol; 2005 May; 11(2):152-6. PubMed ID: 15807814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of a mosquito bite with applications to microneedle design.
    Ramasubramanian MK; Barham OM; Swaminathan V
    Bioinspir Biomim; 2008 Dec; 3(4):046001. PubMed ID: 18779629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgical needle sharpness.
    Thacker JG; Rodeheaver GT; Towler MA; Edlich RF
    Am J Surg; 1989 Mar; 157(3):334-9. PubMed ID: 2919741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromachined needle arrays for drug delivery or fluid extraction.
    Brazzle J; Papautsky I; Frazier AB
    IEEE Eng Med Biol Mag; 1999; 18(6):53-8. PubMed ID: 10576073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel needle cutting edge geometry for end-cut biopsy.
    Moore JZ; McLaughlin PW; Shih AJ
    Med Phys; 2012 Jan; 39(1):99-108. PubMed ID: 22225279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy.
    Obataya I; Nakamura C; Han S; Nakamura N; Miyake J
    Biosens Bioelectron; 2005 Feb; 20(8):1652-5. PubMed ID: 15626623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in penetration force of intravenous catheters: effect of grinding methods on inner needles of intravenous catheters.
    Suzuki T; Tanaka A; Fukuyama H; Nishiyama J; Kanazawa M; Oda M; Takahashi M
    Tokai J Exp Clin Med; 2004 Dec; 29(4):175-81. PubMed ID: 15717489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combination of experimental and finite element analyses of needle-tissue interaction to compute the stresses and deformations during injection at different angles.
    Halabian M; Beigzadeh B; Karimi A; Shirazi HA; Shaali MH
    J Clin Monit Comput; 2016 Dec; 30(6):965-975. PubMed ID: 26515741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tower microneedle via reverse drawing lithography for innocuous intravitreal drug delivery.
    Lee CY; Lee K; You YS; Lee SH; Jung H
    Adv Healthc Mater; 2013 Jun; 2(6):812-6. PubMed ID: 23209023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and simulation of flexible needles.
    Goksel O; Dehghan E; Salcudean SE
    Med Eng Phys; 2009 Nov; 31(9):1069-78. PubMed ID: 19674926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model of a controllable needle-free jet injector.
    Williams RM; Hogan NC; Nielsen PM; Hunter IW; Taberner AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2052-5. PubMed ID: 23366323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.