These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 1593475)
1. Metabolic changes with fatigue in different types of single muscle fibres of Xenopus laevis. Nagesser AS; van der Laarse WJ; Elzinga G J Physiol; 1992 Mar; 448():511-23. PubMed ID: 1593475 [TBL] [Abstract][Full Text] [Related]
2. ATP formation and ATP hydrolysis during fatiguing, intermittent stimulation of different types of single muscle fibres from Xenopus laevis. Nagesser AS; Van der Laarse WJ; Elzinga G J Muscle Res Cell Motil; 1993 Dec; 14(6):608-18. PubMed ID: 8126221 [TBL] [Abstract][Full Text] [Related]
3. Changes in tetanic and resting [Ca2+]i during fatigue and recovery of single muscle fibres from Xenopus laevis. Lee JA; Westerblad H; Allen DG J Physiol; 1991 Feb; 433():307-26. PubMed ID: 1841942 [TBL] [Abstract][Full Text] [Related]
4. Maximum tension and force-velocity properties of fatigued, single Xenopus muscle fibres studied by caffeine and high K+. Lännergren J; Westerblad H J Physiol; 1989 Feb; 409():473-90. PubMed ID: 2585298 [TBL] [Abstract][Full Text] [Related]
5. ATP content in single fibres from human skeletal muscle after electrical stimulation and during recovery. Söderlund K; Hultman E Acta Physiol Scand; 1990 Jul; 139(3):459-66. PubMed ID: 2239349 [TBL] [Abstract][Full Text] [Related]
6. Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation. Greenhaff PL; Söderlund K; Ren JM; Hultman E J Physiol; 1993 Jan; 460():443-53. PubMed ID: 8487203 [TBL] [Abstract][Full Text] [Related]
7. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres. Edman KA; Lou F J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847 [TBL] [Abstract][Full Text] [Related]
8. Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Karatzaferi C; de Haan A; Ferguson RA; van Mechelen W; Sargeant AJ Pflugers Arch; 2001 Jun; 442(3):467-74. PubMed ID: 11484780 [TBL] [Abstract][Full Text] [Related]
9. Force-dependent and force-independent heat production in single slow- and fast-twitch muscle fibres from Xenopus laevis. Buschman HP; van der Laarse WJ; Stienen GJ; Elzinga G J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):503-19. PubMed ID: 8910233 [TBL] [Abstract][Full Text] [Related]
10. Metabolite patterns related to exhaustion, recovery and transformation of chronically stimulated rabbit fast-twitch muscle. Green HJ; Düsterhöft S; Dux L; Pette D Pflugers Arch; 1992 Mar; 420(3-4):359-66. PubMed ID: 1598191 [TBL] [Abstract][Full Text] [Related]
11. Stable maintenance heat rate and contractile properties of different single muscle fibres from Xenopus laevis at 20 degrees C. Elzinga G; Lännergren J; Stienen GJ J Physiol; 1987 Dec; 393():399-412. PubMed ID: 3446801 [TBL] [Abstract][Full Text] [Related]
12. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Sahlin K; Gorski J; Edström L Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963 [TBL] [Abstract][Full Text] [Related]
13. Age-related effects of fatigue and recovery from fatigue in rat medial gastrocnemius muscle. de Haan A; Lodder MA; Sargeant AJ Q J Exp Physiol; 1989 Sep; 74(5):715-26. PubMed ID: 2594930 [TBL] [Abstract][Full Text] [Related]
14. Caffeine administration results in greater tension development in previously fatigued canine muscle in situ. Howlett RA; Kelley KM; Grassi B; Gladden LB; Hogan MC Exp Physiol; 2005 Nov; 90(6):873-9. PubMed ID: 16118234 [TBL] [Abstract][Full Text] [Related]
15. Energy metabolism in type I and type II human muscle fibres during short term electrical stimulation at different frequencies. Söderlund K; Greenhaff PL; Hultman E Acta Physiol Scand; 1992 Jan; 144(1):15-22. PubMed ID: 1595349 [TBL] [Abstract][Full Text] [Related]
16. The effect of temperature and stimulation scheme on fatigue and recovery in Xenopus muscle fibres. Lännergren J; Westerblad H Acta Physiol Scand; 1988 May; 133(1):73-82. PubMed ID: 3227906 [TBL] [Abstract][Full Text] [Related]
17. Responses of fatigable and fatigue-resistant fibres of rabbit muscle to low-frequency stimulation. Cadefau JA; Parra J; Cussó R; Heine G; Pette D Pflugers Arch; 1993 Sep; 424(5-6):529-37. PubMed ID: 8255737 [TBL] [Abstract][Full Text] [Related]
18. Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions. Gorselink M; Drost MR; van der Vusse GJ Pflugers Arch; 2001 Nov; 443(2):274-9. PubMed ID: 11713654 [TBL] [Abstract][Full Text] [Related]
19. Early metabolic adaptations of rabbit fast-twitch muscle to chronic low-frequency stimulation. Green HJ; Pette D Eur J Appl Physiol Occup Physiol; 1997; 75(5):418-24. PubMed ID: 9189729 [TBL] [Abstract][Full Text] [Related]
20. Metabolism changes in single human fibres during brief maximal exercise. Karatzaferi C; de Haan A; van Mechelen W; Sargeant AJ Exp Physiol; 2001 May; 86(3):411-5. PubMed ID: 11471535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]