BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 15935814)

  • 1. The role of c-MYB in benzene-initiated toxicity.
    Wan J; Badham HJ; Winn L
    Chem Biol Interact; 2005 May; 153-154():171-8. PubMed ID: 15935814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of benzene and the metabolites phenol and catechol on c-Myb and Pim-1 signaling in HD3 cells.
    Wan J; Winn LM
    Toxicol Appl Pharmacol; 2004 Dec; 201(2):194-201. PubMed ID: 15541759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzene-initiated oxidative stress: Effects on embryonic signaling pathways.
    Badham HJ; Renaud SJ; Wan J; Winn LM
    Chem Biol Interact; 2010 Mar; 184(1-2):218-21. PubMed ID: 19913523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells.
    Wan J; Winn LM
    Toxicol Appl Pharmacol; 2007 Jul; 222(2):180-9. PubMed ID: 17614109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benzene-induced bone-marrow toxicity: a hematopoietic stem-cell-specific, aryl hydrocarbon receptor-mediated adverse effect.
    Hirabayashi Y; Inoue T
    Chem Biol Interact; 2010 Mar; 184(1-2):252-8. PubMed ID: 20035730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the role of the aryl hydrocarbon receptor in benzene-initiated toxicity in vitro.
    Badham HJ; Winn LM
    Toxicology; 2007 Jan; 229(3):177-85. PubMed ID: 17161514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of aryl hydrocarbon receptor and the reactive oxygen species in the modulation of glutathione transferase by heavy metals in murine hepatoma cell lines.
    Korashy HM; El-Kadi AO
    Chem Biol Interact; 2006 Sep; 162(3):237-48. PubMed ID: 16914127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benzene-induced hematopoietic toxicity transmitted by AhR in wild-type mouse and nullified by repopulation with AhR-deficient bone marrow cells: time after benzene treatment and recovery.
    Hirabayashi Y; Yoon BI; Li GX; Fujii-Kuriyama Y; Kaneko T; Kanno J; Inoue T
    Chemosphere; 2008 Aug; 73(1 Suppl):S290-4. PubMed ID: 18514254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In utero exposure to benzene increases embryonic c-Myb and Pim-1 protein levels in CD-1 mice.
    Wan J; Winn LM
    Toxicol Appl Pharmacol; 2008 May; 228(3):326-33. PubMed ID: 18281070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53-dependent gene profiling for reactive oxygen species after benzene inhalation: special reference to genes associated with cell cycle regulation.
    Hirabayashi Y
    Chem Biol Interact; 2005 May; 153-154():165-70. PubMed ID: 15935813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early steps in bilirubin-mediated apoptosis in murine hepatoma (Hepa 1c1c7) cells are characterized by aryl hydrocarbon receptor-independent oxidative stress and activation of the mitochondrial pathway.
    Oakes GH; Bend JR
    J Biochem Mol Toxicol; 2005; 19(4):244-55. PubMed ID: 16173058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of aryl hydrocarbon- (Ah) receptor and genotoxins on DNA repair gene expression and cell survival of mouse hepatoma cells.
    Schreck I; Chudziak D; Schneider S; Seidel A; Platt KL; Oesch F; Weiss C
    Toxicology; 2009 May; 259(3):91-6. PubMed ID: 19428948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thioredoxin overexpression in mice, model of attenuation of oxidative stress, prevents benzene-induced hemato-lymphoid toxicity and thymic lymphoma.
    Li GX; Hirabayashi Y; Yoon BI; Kawasaki Y; Tsuboi I; Kodama Y; Kurokawa Y; Yodoi J; Kanno J; Inoue T
    Exp Hematol; 2006 Dec; 34(12):1687-97. PubMed ID: 17157166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of catechols and free radicals in benzene toxicity: an oxidative DNA damage pathway.
    Barreto G; Madureira D; Capani F; Aon-Bertolino L; Saraceno E; Alvarez-Giraldez LD
    Environ Mol Mutagen; 2009 Dec; 50(9):771-80. PubMed ID: 19449395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells.
    Kim MS; Kim SY; Arunachalam S; Hwang PH; Yi HK; Nam SY; Lee DY
    Biochem Biophys Res Commun; 2009 Jul; 385(1):38-43. PubMed ID: 19427836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Aryl hydrocarbon receptor: an illuminating effector of the UVB response.
    Agostinis P; Garmyn M; Van Laethem A
    Sci STKE; 2007 Sep; 2007(403):pe49. PubMed ID: 17848686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between the aryl hydrocarbon receptor and transforming growth factor-beta signaling pathways: evidence of an asymmetrical relationship in rat granulosa cells.
    Bussmann UA; Barañao JL
    Biochem Pharmacol; 2008 Oct; 76(9):1165-74. PubMed ID: 18786509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fitting a xenobiotic receptor into cell homeostasis: how the dioxin receptor interacts with TGFbeta signaling.
    Gomez-Duran A; Carvajal-Gonzalez JM; Mulero-Navarro S; Santiago-Josefat B; Puga A; Fernandez-Salguero PM
    Biochem Pharmacol; 2009 Feb; 77(4):700-12. PubMed ID: 18812170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation.
    Fritsche E; Schäfer C; Calles C; Bernsmann T; Bernshausen T; Wurm M; Hübenthal U; Cline JE; Hajimiragha H; Schroeder P; Klotz LO; Rannug A; Fürst P; Hanenberg H; Abel J; Krutmann J
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8851-6. PubMed ID: 17502624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone H3 tail positioning and acetylation by the c-Myb but not the v-Myb DNA-binding SANT domain.
    Mo X; Kowenz-Leutz E; Laumonnier Y; Xu H; Leutz A
    Genes Dev; 2005 Oct; 19(20):2447-57. PubMed ID: 16195416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.