These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 15935910)

  • 21. Radiocesium reaction with illite and organic matter in marine sediment.
    Kim Y; Cho S; Kang HD; Kim W; Lee HR; Doh SH; Kim K; Yun SG; Kim DS; Jeong GY
    Mar Pollut Bull; 2006 Jun; 52(6):659-65. PubMed ID: 16324722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution of artificial radionuclides in deep sediments of the Mediterranean Sea.
    Garcia-Orellana J; Pates JM; Masqué P; Bruach JM; Sanchez-Cabeza JA
    Sci Total Environ; 2009 Jan; 407(2):887-98. PubMed ID: 18986686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The changes in the contents of 137Cs in bottom sediments of some Masurian lakes during 10-15 y observation (Poland).
    Kapala J; Karpińska M; Mnich Z; Szpak A; Milewski R; Citko D
    Radiat Prot Dosimetry; 2008; 130(2):178-85. PubMed ID: 18283067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cumulative history recorded in the depth distribution of radiocesium in sediments deposited on a sandbar.
    Tanaka K; Kondo H; Sakaguchi A; Takahashi Y
    J Environ Radioact; 2015 Dec; 150():213-9. PubMed ID: 26360256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radionuclide contamination of sediment deposits in the Ob and Yenisey estuaries and areas of the Kara Sea.
    Standring WJ; Stepanets O; Brown JE; Dowdall M; Borisov A; Nikitin A
    J Environ Radioact; 2008 Apr; 99(4):665-79. PubMed ID: 17976877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments.
    Zaborska A; Winogradow A; Pempkowiak J
    J Environ Radioact; 2014 Jan; 127():11-25. PubMed ID: 24121306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iodine-129 and caesium-137 in Chernobyl contaminated soil and their chemical fractionation.
    Hou XL; Fogh CL; Kucera J; Andersson KG; Dahlgaard H; Nielsen SP
    Sci Total Environ; 2003 Jun; 308(1-3):97-109. PubMed ID: 12738204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accumulation of Chernobyl-derived 137Cs in bottom sediments of some Finnish lakes.
    Ilus E; Saxén R
    J Environ Radioact; 2005; 82(2):199-221. PubMed ID: 15878418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 137Cs loss via soil erosion from a mountainous headwater catchment in central Japan.
    Fukuyama T; Takenaka C; Onda Y
    Sci Total Environ; 2005 Nov; 350(1-3):238-47. PubMed ID: 16227083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia.
    Olley J; Brooks A; Spencer J; Pietsch T; Borombovits D
    J Environ Radioact; 2013 Oct; 124():121-9. PubMed ID: 23727879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 137Cs budget during the period of 1960s in a small drainage basin on the Loess Plateau of China.
    Zhang X; Walling DE; Yang Q; He X; Wen Z; Qi Y; Feng M
    J Environ Radioact; 2006; 86(1):78-91. PubMed ID: 16144731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of pre- and post-Chernobyl radiocaesium with particle size fractions of soils.
    Spezzano P
    J Environ Radioact; 2005; 83(2):117-27. PubMed ID: 15923068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concentration ratios for small mammals collected from the exposed sediments of a 137Cs contaminated reservoir.
    Paller MH; Timothy Jannik G; Wike LD
    J Environ Radioact; 2006; 90(3):224-35. PubMed ID: 16963166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radioactivity of the Bega sediment-case study of a contaminated canal.
    Bikit I; Varga E; Conkić Lj; Slivka J; Mrda D; Curcić S; Zikić-Todorović N; Vesković M
    Appl Radiat Isot; 2005 Aug; 63(2):261-6. PubMed ID: 15946851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determining the Chernobyl impact on sediments of a pre-Alpine lake with a very comprehensive set of data.
    Erlinger Ch; Lettner H; Hubmer A; Hofmann W; Steinhäusler F
    J Environ Radioact; 2008 Aug; 99(8):1294-301. PubMed ID: 18501485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary evaluation of (135)Cs/(137)Cs as a forensic tool for identifying source of radioactive contamination.
    Taylor VF; Evans RD; Cornett RJ
    J Environ Radioact; 2008 Jan; 99(1):109-18. PubMed ID: 17869392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model testing of radioactive contamination by 90Sr, 137Cs and 239,240Pu of water and bottom sediments in the Techa River (Southern Urals, Russia).
    Kryshev II; Boyer P; Monte L; Brittain JE; Dzyuba NN; Krylov AL; Kryshev AI; Nosov AV; Sanina KD; Zheleznyak MI
    Sci Total Environ; 2009 Mar; 407(7):2349-60. PubMed ID: 19167743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece.
    Arapis GD; Karandinos MG
    J Environ Radioact; 2004; 77(2):133-42. PubMed ID: 15312699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the radiocesium carbonate barrier in organics-rich sediments of Lake Juodis, Lithuania.
    Tarasiuk N; Koviazina E; Kubareviciene V; Shliahtich E
    J Environ Radioact; 2007; 93(2):100-18. PubMed ID: 17267080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Concentration and specific activity of fallout 137Cs in extracted and particle-size fractions of cultivated soils.
    Tsukada H; Takeda A; Hisamatsu S; Inaba J
    J Environ Radioact; 2008 Jun; 99(6):875-81. PubMed ID: 18162267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.