BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 15936021)

  • 1. Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm.
    Sadeghi M; Parto S; Arab S; Ranjbar B
    FEBS Lett; 2005 Jun; 579(16):3397-400. PubMed ID: 15936021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for protein accessibility prediction based on residue types and conformational states.
    Zarei R; Arab S; Sadeghi M
    Comput Biol Chem; 2007 Oct; 31(5-6):384-8. PubMed ID: 17888743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting protein secondary structure and solvent accessibility with an improved multiple linear regression method.
    Qin S; He Y; Pan XM
    Proteins; 2005 Nov; 61(3):473-80. PubMed ID: 16152601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YASSPP: better kernels and coding schemes lead to improvements in protein secondary structure prediction.
    Karypis G
    Proteins; 2006 Aug; 64(3):575-86. PubMed ID: 16763996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile and declarative dynamic programming using pair algebras.
    Steffen P; Giegerich R
    BMC Bioinformatics; 2005 Sep; 6():224. PubMed ID: 16156887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training.
    Dor O; Zhou Y
    Proteins; 2007 Mar; 66(4):838-45. PubMed ID: 17177203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of tetrapeptide signals for protein secondary-structure prediction.
    Feng Y; Luo L
    Amino Acids; 2008 Oct; 35(3):607-14. PubMed ID: 18431531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolved cellular automata for protein secondary structure prediction imitate the determinants for folding observed in nature.
    Chopra P; Bender A
    In Silico Biol; 2007; 7(1):87-93. PubMed ID: 17688429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic sampling of protein conformations: new hope for brute force?
    Feldman HJ; Hogue CW
    Proteins; 2002 Jan; 46(1):8-23. PubMed ID: 11746699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MUPRED: a tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction.
    Bondugula R; Xu D
    Proteins; 2007 Feb; 66(3):664-70. PubMed ID: 17109407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatitis C virus contact map prediction based on binary encoding strategy.
    Zhang GZ; Han K
    Comput Biol Chem; 2007 Jun; 31(3):233-8. PubMed ID: 17499551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination of outer membrane proteins using support vector machines.
    Park KJ; Gromiha MM; Horton P; Suwa M
    Bioinformatics; 2005 Dec; 21(23):4223-9. PubMed ID: 16204348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid propensities for secondary structures are influenced by the protein structural class.
    Costantini S; Colonna G; Facchiano AM
    Biochem Biophys Res Commun; 2006 Apr; 342(2):441-51. PubMed ID: 16487481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction.
    King RD; Sternberg MJ
    Protein Sci; 1996 Nov; 5(11):2298-310. PubMed ID: 8931148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-based protein structure prediction using a reduced state-space hidden Markov model.
    Lampros C; Costas Papaloukas ; Exarchos TP; Yorgos Goletsis ; Fotiadis DI
    Comput Biol Med; 2007 Sep; 37(9):1211-24. PubMed ID: 17161834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LOOPER: a molecular mechanics-based algorithm for protein loop prediction.
    Spassov VZ; Flook PK; Yan L
    Protein Eng Des Sel; 2008 Feb; 21(2):91-100. PubMed ID: 18194981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for accurate one-dimensional protein structure prediction based on fragment matching.
    Zhou T; Shu N; Hovmöller S
    Bioinformatics; 2010 Feb; 26(4):470-7. PubMed ID: 20007252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein tertiary structure using PROFESY, a novel method based on fragment assembly and conformational space annealing.
    Lee J; Kim SY; Joo K; Kim I; Lee J
    Proteins; 2004 Sep; 56(4):704-14. PubMed ID: 15281124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein structure class by coupling improved genetic algorithm and support vector machine.
    Li ZC; Zhou XB; Lin YR; Zou XY
    Amino Acids; 2008 Oct; 35(3):581-90. PubMed ID: 18427714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measures for the assessment of fuzzy predictions of protein secondary structure.
    Lee J
    Proteins; 2006 Nov; 65(2):453-62. PubMed ID: 16948155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.