These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15936059)

  • 21. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate.
    Labanowski J; Monna F; Bermond A; Cambier P; Fernandez C; Lamy I; van Oort F
    Environ Pollut; 2008 Apr; 152(3):693-701. PubMed ID: 17692441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I. Behaviour of Cu and Cr.
    Velizarova E; Ribeiro AB; Mateus E; Ottosen LM
    J Hazard Mater; 2004 Mar; 107(3):103-13. PubMed ID: 15072818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A kinetic study of chelant-assisted remediation of contaminated dredged sediment.
    Polettini A; Pomi R; Rolle E; Ceremigna D; De Propris L; Gabellini M; Tornato A
    J Hazard Mater; 2006 Oct; 137(3):1458-65. PubMed ID: 16750293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seasonal and spatial characteristics of seawater and sediment at Youngil Bay, southeast coast of Korea.
    Lee M; Bae W; Chung J; Jung HS; Shim H
    Mar Pollut Bull; 2008; 57(6-12):325-34. PubMed ID: 18514230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater.
    Kent DB; Davis JA; Joye JL; Curtis GP
    Environ Pollut; 2008 May; 153(1):44-52. PubMed ID: 18178297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal removal and associated binding fraction transformation in contaminated river sediment washed by different types of agents.
    Wang H; Liu T; Feng S; Zhang W
    PLoS One; 2017; 12(3):e0174571. PubMed ID: 28350832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution.
    Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O
    Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autotrophic denitrification and its effect on metal speciation during marine sediment remediation.
    Shao M; Zhang T; Fang HH
    Water Res; 2009 Jul; 43(12):2961-8. PubMed ID: 19476962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River watershed, Montana, and the role of colloids in metal uptake.
    Farag AM; Nimick DA; Kimball BA; Church SE; Harper DD; Brumbaugh WG
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):397-409. PubMed ID: 17219028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remediation of heavy metal polluted sediment by suspension and solid-bed leaching: estimate of metal removal efficiency.
    Löser C; Zehnsdorf A; Hoffmann P; Seidel H
    Chemosphere; 2007 Jan; 66(9):1699-705. PubMed ID: 16908047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments.
    Seo DC; Yu K; DeLaune RD
    Chemosphere; 2008 Dec; 73(11):1757-64. PubMed ID: 18926554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas: a case study in Shenzhen, China.
    Chen K; Jiao JJ
    Environ Pollut; 2008 Feb; 151(3):576-84. PubMed ID: 17543432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.
    Almeida CM; Mucha AP; Bordalo AA; Vasconcelos MT
    Sci Total Environ; 2008 Sep; 403(1-3):188-95. PubMed ID: 18606437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites.
    Ríos CA; Williams CD; Roberts CL
    J Hazard Mater; 2008 Aug; 156(1-3):23-35. PubMed ID: 18221835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of heavy metals in water and surface sediment in five Rift Valley lakes in Kenya for assessment of recent increase in anthropogenic activities.
    Ochieng EZ; Lalah JO; Wandiga SO
    Bull Environ Contam Toxicol; 2007 Nov; 79(5):570-6. PubMed ID: 17943221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sources of heavy metal input into Winam Gulf, Kenya.
    Lalah JO; Ochieng EZ; Wandiga SO
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):277-84. PubMed ID: 18607523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations.
    Kalmykova Y; Strömvall AM; Steenari BM
    J Hazard Mater; 2008 Apr; 152(2):885-91. PubMed ID: 17765394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.