These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 15936099)
21. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium. Wen T; Wang R; Sotero A; Li Y Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28846643 [No Abstract] [Full Text] [Related]
22. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Varshney M; Li Y Biosens Bioelectron; 2009 Jun; 24(10):2951-60. PubMed ID: 19041235 [TBL] [Abstract][Full Text] [Related]
23. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Yang L; Bashir R Biotechnol Adv; 2008; 26(2):135-50. PubMed ID: 18155870 [TBL] [Abstract][Full Text] [Related]
24. Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Liébana S; Lermo A; Campoy S; Cortés MP; Alegret S; Pividori MI Biosens Bioelectron; 2009 Oct; 25(2):510-3. PubMed ID: 19716286 [TBL] [Abstract][Full Text] [Related]
25. A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Chen Q; Lin J; Gan C; Wang Y; Wang D; Xiong Y; Lai W; Li Y; Wang M Biosens Bioelectron; 2015 Dec; 74():504-11. PubMed ID: 26176211 [TBL] [Abstract][Full Text] [Related]
26. Detection and identification of Salmonella Typhimurium in bovine diarrhoeic fecal samples by immunomagnetic separation and multiplex PCR assay. Salehi TZ; Tadjbakhsh H; Atashparvar N; Nadalian MG; Mahzounieh MR Zoonoses Public Health; 2007; 54(6-7):231-6. PubMed ID: 17803511 [TBL] [Abstract][Full Text] [Related]
27. A methodology for rapid detection of Salmonella typhimurium using label-free electrochemical impedance spectroscopy. Nandakumar V; La Belle JT; Reed J; Shah M; Cochran D; Joshi L; Alford TL Biosens Bioelectron; 2008 Dec; 24(4):1045-8. PubMed ID: 18678481 [TBL] [Abstract][Full Text] [Related]
28. Comparison of impedance at the microelectrode-saline and microelectrode-culture medium interface. Carter SJ; Linker CJ; Turkle-Huslig T; Howard LL IEEE Trans Biomed Eng; 1992 Nov; 39(11):1123-9. PubMed ID: 1487275 [TBL] [Abstract][Full Text] [Related]
29. Modified Bacteriophage S16 Long Tail Fiber Proteins for Rapid and Specific Immobilization and Detection of Salmonella Cells. Denyes JM; Dunne M; Steiner S; Mittelviefhaus M; Weiss A; Schmidt H; Klumpp J; Loessner MJ Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411223 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of an automated immunomagnetic separation method for the rapid detection of Salmonella species in poultry environmental samples. Lynch MJ; Leon-Velarde CG; McEwen S; Odumeru JA J Microbiol Methods; 2004 Aug; 58(2):285-8. PubMed ID: 15234527 [TBL] [Abstract][Full Text] [Related]
31. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Guo PL; Tang M; Hong SL; Yu X; Pang DW; Zhang ZL Biosens Bioelectron; 2015 Dec; 74():628-36. PubMed ID: 26201979 [TBL] [Abstract][Full Text] [Related]
32. Impedimetric method for measuring ultra-low E. coli concentrations in human urine. Settu K; Chen CJ; Liu JT; Chen CL; Tsai JZ Biosens Bioelectron; 2015 Apr; 66():244-50. PubMed ID: 25437359 [TBL] [Abstract][Full Text] [Related]
33. Macroporous silicon based simple and efficient trapping platform for electrical detection of Salmonella typhimurium pathogens. Das RD; RoyChaudhuri C; Maji S; Das S; Saha H Biosens Bioelectron; 2009 Jul; 24(11):3215-22. PubMed ID: 19477111 [TBL] [Abstract][Full Text] [Related]
34. Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes. Paredes J; Becerro S; Arana S J Microbiol Methods; 2014 May; 100():77-83. PubMed ID: 24632516 [TBL] [Abstract][Full Text] [Related]
35. Highly Sensitive Detection of Salmonella typhimurium Using a Colorimetric Paper-Based Analytical Device Coupled with Immunomagnetic Separation. Srisa-Art M; Boehle KE; Geiss BJ; Henry CS Anal Chem; 2018 Jan; 90(1):1035-1043. PubMed ID: 29211962 [TBL] [Abstract][Full Text] [Related]
36. Development of liposome immunoassay for salmonella spp. using immunomagnetic separation and immunoliposome. Shin J; Kim M J Microbiol Biotechnol; 2008 Oct; 18(10):1689-94. PubMed ID: 18955821 [TBL] [Abstract][Full Text] [Related]
37. Endothelial cell electrical impedance parameter artifacts produced by a gold electrode and phase sensitive detection. English AE; Squire JC; Bodmer JE; Moy AB IEEE Trans Biomed Eng; 2007 May; 54(5):863-73. PubMed ID: 17518283 [TBL] [Abstract][Full Text] [Related]
38. Direct electrical transduction of antibody binding to a covalent virus layer using electrochemical impedance. Yang LM; Diaz JE; McIntire TM; Weiss GA; Penner RM Anal Chem; 2008 Aug; 80(15):5695-705. PubMed ID: 18590279 [TBL] [Abstract][Full Text] [Related]
39. An aptamer biosensor based dual signal amplification system for the detection of salmonella typhimurium. Li A; Zuo P; Ye BC Anal Biochem; 2021 Feb; 615():114050. PubMed ID: 33285125 [TBL] [Abstract][Full Text] [Related]