These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 15936110)
1. Glycerol-l-lactide coating polymer leads to delay in bone ingrowth in hydroxyapatite implants. Schnettler R; Pfefferle HJ; Kilian O; Heiss C; Kreuter J; Lommel D; Pavlidis T; Stahl JP; Meyer C; Wenisch S; Alt V J Control Release; 2005 Aug; 106(1-2):154-61. PubMed ID: 15936110 [TBL] [Abstract][Full Text] [Related]
2. Effect of glycerol-L-lactide coating polymer on bone ingrowth of bFGF-coated hydroxyapatite implants. Alt V; Pfefferle HJ; Kreuter J; Stahl JP; Pavlidis T; Meyer C; Mockwitz J; Wenisch S; Schnettler R J Control Release; 2004 Sep; 99(1):103-11. PubMed ID: 15342184 [TBL] [Abstract][Full Text] [Related]
3. Osseointegration of a hydroxyapatite-coated multilayered mesh stem. Kusakabe H; Sakamaki T; Nihei K; Oyama Y; Yanagimoto S; Ichimiya M; Kimura J; Toyama Y Biomaterials; 2004 Jul; 25(15):2957-69. PubMed ID: 14967528 [TBL] [Abstract][Full Text] [Related]
4. In vivo osseointegration of nano-designed composite coatings on titanium implants. Facca S; Lahiri D; Fioretti F; Messadeq N; Mainard D; Benkirane-Jessel N; Agarwal A ACS Nano; 2011 Jun; 5(6):4790-9. PubMed ID: 21591801 [TBL] [Abstract][Full Text] [Related]
5. Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants. Schnettler R; Alt V; Dingeldein E; Pfefferle HJ; Kilian O; Meyer C; Heiss C; Wenisch S Biomaterials; 2003 Nov; 24(25):4603-8. PubMed ID: 12951003 [TBL] [Abstract][Full Text] [Related]
6. In vivo assessment of bone ingrowth potential of three-dimensional e-beam produced implant surfaces and the effect of additional treatment by acid etching and hydroxyapatite coating. Biemond JE; Hannink G; Jurrius AM; Verdonschot N; Buma P J Biomater Appl; 2012 Mar; 26(7):861-75. PubMed ID: 21273261 [TBL] [Abstract][Full Text] [Related]
7. Basic fibroblast growth factor promotes bone ingrowth in porous hydroxyapatite. Wang JS; Aspenberg P Clin Orthop Relat Res; 1996 Dec; (333):252-60. PubMed ID: 8981904 [TBL] [Abstract][Full Text] [Related]
8. Comparison of plasma-sprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings: in vivo study. Lee TM; Yang CY; Chang E; Tsai RS J Biomed Mater Res A; 2004 Dec; 71(4):652-60. PubMed ID: 15505828 [TBL] [Abstract][Full Text] [Related]
9. Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. Xue W; Liu X; Zheng X; Ding C J Biomed Mater Res A; 2005 Sep; 74(4):553-61. PubMed ID: 16025491 [TBL] [Abstract][Full Text] [Related]
10. Hepatocyte growth factor (HGF) adsorption kinetics and enhancement of osteoblast differentiation on hydroxyapatite surfaces. Hossain M; Irwin R; Baumann MJ; McCabe LR Biomaterials; 2005 May; 26(15):2595-602. PubMed ID: 15585262 [TBL] [Abstract][Full Text] [Related]
11. In vivo evaluation of hydroxyapatite coatings of different crystallinities. Oh S; Tobin E; Yang Y; Carnes DL; Ong JL Int J Oral Maxillofac Implants; 2005; 20(5):726-31. PubMed ID: 16274146 [TBL] [Abstract][Full Text] [Related]
12. Effects of bone morphogenetic protein-2 and hyaluronic acid on the osseointegration of hydroxyapatite-coated implants: an experimental study in sheep. Aebli N; Stich H; Schawalder P; Theis JC; Krebs J J Biomed Mater Res A; 2005 Jun; 73(3):295-302. PubMed ID: 15834931 [TBL] [Abstract][Full Text] [Related]
13. Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material. Holmbom J; Södergård A; Ekholm E; Märtson M; Kuusilehto A; Saukko P; Penttinen R J Biomed Mater Res A; 2005 Nov; 75(2):308-15. PubMed ID: 16059893 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyapatite coating of cellulose sponge does not improve its osteogenic potency in rat bone. Ekholm E; Tommila M; Forsback AP; Märtson M; Holmbom J; Aäritalo V; Finnberg C; Kuusilehto A; Salonen J; Yli-Urpo A; Penttinen R Acta Biomater; 2005 Sep; 1(5):535-44. PubMed ID: 16701833 [TBL] [Abstract][Full Text] [Related]
15. Histomorphometric analyses of bone interface with titanium-aluminum-vanadium and hydroxyapatite-coated implants by biomimetic process. Zagury R; Harari ND; Conz MB; Soares Gde A; Vidigal GM Implant Dent; 2007 Sep; 16(3):290-6. PubMed ID: 17846545 [TBL] [Abstract][Full Text] [Related]
16. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227 [TBL] [Abstract][Full Text] [Related]
17. Biological assessment of the bone-screw interface after insertion of uncoated and hydroxyapatite-coated pedicular screws in the osteopenic sheep. Fini M; Giavaresi G; Greggi T; Martini L; Aldini NN; Parisini P; Giardino R J Biomed Mater Res A; 2003 Jul; 66(1):176-83. PubMed ID: 12833444 [TBL] [Abstract][Full Text] [Related]
18. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. Faeda RS; Tavares HS; Sartori R; Guastaldi AC; Marcantonio E J Oral Maxillofac Surg; 2009 Aug; 67(8):1706-15. PubMed ID: 19615586 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence microscopic analysis of bone osseointegration of strontium-substituted hydroxyapatite implants. Fu DL; Jiang QH; He FM; Yang GL; Liu L J Zhejiang Univ Sci B; 2012 May; 13(5):364-71. PubMed ID: 22556174 [TBL] [Abstract][Full Text] [Related]
20. [Standardized infection model for the study of bony ingrowth dynamics of hydroxyapatite-coated and uncoated pure titanium mesh in swine femur]. Wilke A; Orth J; Kraft M; Griss P Z Orthop Ihre Grenzgeb; 1993; 131(4):370-6. PubMed ID: 8212816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]