These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 159363)

  • 61. Bacteriophage Mu Mom protein responsible for DNA modification is a new member of the acyltransferase superfamily.
    Kaminska KH; Bujnicki JM
    Cell Cycle; 2008 Jan; 7(1):120-1. PubMed ID: 18204304
    [No Abstract]   [Full Text] [Related]  

  • 62. Mutants of the N-3 R-factor conditionally defective in hspII modification and deoxyribonucleic acid-cytosine methylase activity.
    Schlagman S; Hattman S
    J Bacteriol; 1974 Oct; 120(1):234-9. PubMed ID: 4371329
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The extremophile
    Gulati P; Singh A; Goel M; Saha S
    Front Microbiol; 2023; 14():1126750. PubMed ID: 37007530
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bacteriophage T2 and T4, dam+ and damh and Eco dam+ methylation: preference at different sites.
    Doolittle MM; Sirotkin K
    Biochim Biophys Acta; 1988 Feb; 949(2):240-6. PubMed ID: 2829967
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pleiotropic effects of a DNA adenine methylation mutation (dam-3) in Escherichia coli K12.
    Marinus MG; Morris NR
    Mutat Res; 1975 Apr; 28(1):15-26. PubMed ID: 167279
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Analysis of bacteriophage deoxyribonucleic acid sequences methylated by host- and R-factor-controlled enzymes.
    May MS; Hattman S
    J Bacteriol; 1975 Aug; 123(2):768-70. PubMed ID: 1097428
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Restriction analysis and quantitative estimation of methylated bases of filamentous and unicellular cyanobacterial DNAs.
    Padhy RN; Hottat FG; Coene MM; Hoet PP
    J Bacteriol; 1988 Apr; 170(4):1934-9. PubMed ID: 2832390
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs.
    Bair CL; Black LW
    J Mol Biol; 2007 Feb; 366(3):768-78. PubMed ID: 17188297
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Role of bacteriophage Mu C protein in activation of the mom gene promoter.
    Bölker M; Wulczyn FG; Kahmann R
    J Bacteriol; 1989 Apr; 171(4):2019-27. PubMed ID: 2522924
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cleavage at the twelve-base-pair sequence 5'-TCTAGATCTAGA-3' using M.Xbal (TCTAGm6A) methylation and DpnI (Gm6A/TC) cleavage.
    Patel Y; Van Cott E; Wilson GG; McClelland M
    Nucleic Acids Res; 1990 Mar; 18(6):1603-7. PubMed ID: 2158082
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inhibition of the type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7.
    Bandyopadhyay PK; Studier FW; Hamilton DL; Yuan R
    J Mol Biol; 1985 Apr; 182(4):567-78. PubMed ID: 2989534
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction.
    Urig S; Gowher H; Hermann A; Beck C; Fatemi M; Humeny A; Jeltsch A
    J Mol Biol; 2002 Jun; 319(5):1085-96. PubMed ID: 12079349
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deoxyribonucleic acid adenine and cytosine methylation in Salmonella typhimurium and Salmonella typhi.
    Gómez-Eichelmann MC
    J Bacteriol; 1979 Nov; 140(2):574-9. PubMed ID: 387741
    [TBL] [Abstract][Full Text] [Related]  

  • 74. DNA modification methylase activity of Escherichia coli restriction endonucleases K and P.
    Haberman A; Heywood J; Meselson M
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3138-41. PubMed ID: 4564204
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sequence specificity of the wild-type dam+) and mutant (damh) forms of bacteriophage T2 DNA adenine methylase.
    Hattman S; van Ormondt H; de Waard A
    J Mol Biol; 1978 Mar; 119(3):361-76. PubMed ID: 641992
    [No Abstract]   [Full Text] [Related]  

  • 76. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling.
    Xing XW; Tang F; Wu J; Chu JM; Feng YQ; Zhou X; Yuan BF
    Anal Chem; 2014 Nov; 86(22):11269-74. PubMed ID: 25323974
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adenine methylation at dam sites increases transient gene expression in plant cells.
    Graham MW; Larkin PJ
    Transgenic Res; 1995 Sep; 4(5):324-31. PubMed ID: 8589735
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bacterial DNA methylation and gene transfer efficiency.
    Allamane S; Jourdes P; Ratel D; Vicat JM; Dupré I; Lainé M; Berger F; Benabid AL; Wion D
    Biochem Biophys Res Commun; 2000 Oct; 276(3):1261-4. PubMed ID: 11027620
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Selective protection of 5' ... GGCC ... 3' and 5' ... GCNGC ... 3' sequences by the hypermodified oxopyrimidine in Bacillus subtilis bacteriophage SP10 DNA.
    Wiatr CL; Witmer HJ
    J Virol; 1984 Oct; 52(1):47-54. PubMed ID: 6090709
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The sensitivity of DNA cleavage by SpeI and ApaLI to methylation by M.EcoK.
    Hofer B
    Nucleic Acids Res; 1988 Jun; 16(11):5206. PubMed ID: 2838811
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.