These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15936501)

  • 1. Manipulation of cells using an ultrasonic pressure field.
    Haake A; Neild A; Kim DH; Ihm JE; Sun Y; Dual J; Ju BK
    Ultrasound Med Biol; 2005 Jun; 31(6):857-64. PubMed ID: 15936501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of a microparticle manipulator.
    Neild A; Oberti S; Haake A; Dual J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e455-60. PubMed ID: 16797643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positioning, displacement, and localization of cells using ultrasonic forces.
    Haake A; Neild A; Radziwill G; Dual J
    Biotechnol Bioeng; 2005 Oct; 92(1):8-14. PubMed ID: 16094668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of two-dimensional acoustic resonant modes in a particle separator.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2006 Dec; 44 Suppl 1():e467-71. PubMed ID: 16782151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.
    Mitri FG; Fellah ZE
    Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective retention of viable cells in ultrasonic resonance field devices.
    Gaida T; Doblhoff-Dier O; Strutzenberger K; Katinger H; Burger W; Gröschl M; Handl B; Benes E
    Biotechnol Prog; 1996; 12(1):73-6. PubMed ID: 8845110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping of microparticles in the near field of an ultrasonic transducer.
    Lilliehorn T; Simu U; Nilsson M; Almqvist M; Stepinski T; Laurell T; Nilsson J; Johansson S
    Ultrasonics; 2005 Mar; 43(5):293-303. PubMed ID: 15737379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new immobilisation method to arrange particles in a gel matrix by ultrasound standing waves.
    Gherardini L; Cousins CM; Hawkes JJ; Spengler J; Radel S; Lawler H; Devcic-Kuhar B; Gröschl M; Coakley WT; McLoughlin AJ
    Ultrasound Med Biol; 2005 Feb; 31(2):261-72. PubMed ID: 15708466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial confinement of ultrasonic force fields in microfluidic channels.
    Manneberg O; Melker Hagsäter S; Svennebring J; Hertz HM; Kutter JP; Bruus H; Wiklund M
    Ultrasonics; 2009 Jan; 49(1):112-9. PubMed ID: 18701122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector.
    Koyama D; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1152-9. PubMed ID: 20442026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation.
    Dual J; Hahn P; Leibacher I; Möller D; Schwarz T; Wang J
    Lab Chip; 2012 Oct; 12(20):4010-21. PubMed ID: 22971740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations.
    Mitri FG; Fatemi M
    Ultrasonics; 2005 May; 43(6):435-45. PubMed ID: 15823318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel ultrasonic resonance field device for the retention of animal cells.
    Doblhoff-Dier O; Gaida T; Katinger H; Burger W; Gröschl M; Benes E
    Biotechnol Prog; 1994; 10(4):428-32. PubMed ID: 7765096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotation of non-spherical micro-particles by amplitude modulation of superimposed orthogonal ultrasonic modes.
    Schwarz T; Petit-Pierre G; Dual J
    J Acoust Soc Am; 2013 Mar; 133(3):1260-8. PubMed ID: 23463999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound.
    Oberti S; Neild A; Dual J
    J Acoust Soc Am; 2007 Feb; 121(2):778-85. PubMed ID: 17348502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of ultrasound streaming and radiation force in biosensors.
    Kuznetsova LA; Coakley WT
    Biosens Bioelectron; 2007 Mar; 22(8):1567-77. PubMed ID: 16979887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid.
    Silva GT
    J Acoust Soc Am; 2014 Nov; 136(5):2405-13. PubMed ID: 25373943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.