BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15936706)

  • 1. Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum.
    Delaporte M; Soudant P; Moal J; Kraffe E; Marty Y; Samain JF
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Apr; 140(4):460-70. PubMed ID: 15936706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a mono-specific algal diet on immune functions in two bivalve species--Crassostrea gigas and Ruditapes philippinarum.
    Delaporte M; Soudant P; Moal J; Lambert C; Quéré C; Miner P; Choquet G; Paillard C; Samain JF
    J Exp Biol; 2003 Sep; 206(Pt 17):3053-64. PubMed ID: 12878673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid composition of Ruditapes philippinarum spat: effect of ration and diet quality.
    Fernández-Reiriz MJ; Labarta U; Albentosa M; Pérez-Camacho A
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Jun; 144(2):229-37. PubMed ID: 16647874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets.
    Pirini M; Manuzzi MP; Pagliarani A; Trombetti F; Borgatti AR; Ventrella V
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):616-26. PubMed ID: 17482494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane phospholipid composition of hemocytes in the Pacific oyster Crassostrea gigas and the Manila clam Ruditapes philippinarum.
    Le Grand F; Kraffe E; Marty Y; Donaghy L; Soudant P
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Aug; 159(4):383-91. PubMed ID: 21527350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids.
    Pernet F; Tremblay R; Comeau L; Guderley H
    J Exp Biol; 2007 Sep; 210(Pt 17):2999-3014. PubMed ID: 17704075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application.
    Dunstan GA; Brown MR; Volkman JK
    Phytochemistry; 2005 Nov; 66(21):2557-70. PubMed ID: 16226285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dietary fatty acid composition on fatty acid profiles of polar and neutral lipid tissue fractions in zebra finches, Taeniopygia guttata.
    McCue MD; Amitai O; Khozin-Goldberg I; McWilliams SR; Pinshow B
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Sep; 154(1):165-72. PubMed ID: 19524058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary lipid level influences fatty acid profiles, tissue composition, and lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis.
    Huang CH; Lin WY; Chu JH
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Nov; 142(3):383-8. PubMed ID: 16214383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of two microalgal diets. 1. Influence on the biochemical and fatty acid compositions of raw oysters (Crassostrea gigas).
    Pennarun AL; Prost C; Haure J; Demaimay M
    J Agric Food Chem; 2003 Mar; 51(7):2006-10. PubMed ID: 12643666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial activity, hemocyte parameters and lipid composition modulation by dietary conditioning in the Pacific oyster Crassostrea gigas.
    Dudognon T; Lambert C; Quere C; Auffret M; Soudant P; Kraffe E
    J Comp Physiol B; 2014 Apr; 184(3):303-17. PubMed ID: 24441864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liver fatty acid and element changes after partial hepatectomy in mice fed olive oil- and corn oil-enriched diets.
    Domitrovic R; Milin C; Radosevic-Stasic B
    Biol Trace Elem Res; 2006 Jan; 109(1):61-74. PubMed ID: 16388104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid composition, sarcoplasmic reticular lipid oxidation, and immunity of hard clam (Meretrix lusoria) fed different dietary microalgae.
    Chen SM; Tseng KY; Huang CH
    Fish Shellfish Immunol; 2015 Jul; 45(1):141-5. PubMed ID: 25707599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary palmitic acid influences LDL-mediated lymphocyte proliferation differently to other mono- and polyunsaturated fatty acids in rats.
    Tinahones FJ; Gómez-Zumaquero JM; Monzón A; Rojo-Martínez G; Pareja A; Morcillo S; Cardona F; Olveira G; Soriguer F
    Diabetes Nutr Metab; 2004 Oct; 17(5):250-8. PubMed ID: 16295046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diet preferences for specific fatty acids and their effect on composition of fat reserves in migratory Red-eyed Vireos (Vireo olivaceous).
    Pierce BJ; McWilliams SR; Place AR; Huguenin MA
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Aug; 138(4):503-14. PubMed ID: 15369840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dietary alpha-linolenic fatty acid derived from chia when fed as ground seed, whole seed and oil on lipid content and fatty acid composition of rat plasma.
    Ayerza R; Coates W
    Ann Nutr Metab; 2007; 51(1):27-34. PubMed ID: 17356263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-year tracking of fatty acid composition of plasma phospholipids in healthy children.
    Guerra A; Demmelmair H; Toschke AM; Koletzko B
    Ann Nutr Metab; 2007; 51(5):433-8. PubMed ID: 18025816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal dietary fat alters amniotic fluid and fetal intestinal membrane essential n-6 and n-3 fatty acids in the rat.
    Friesen R; Innis SM
    Am J Physiol Gastrointest Liver Physiol; 2006 Mar; 290(3):G505-10. PubMed ID: 16282365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid profile of rats fed high-fat diets based on flaxseed, peanut, trout, or chicken skin.
    Cintra DE; Costa AV; Peluzio Mdo C; Matta SL; Silva MT; Costa NM
    Nutrition; 2006 Feb; 22(2):197-205. PubMed ID: 16459232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in fatty acid composition of Artemia salina nauplii enriched with microalgae and baker's yeast for use in larviculture.
    Chakraborty RD; Chakraborty K; Radhakrishnan EV
    J Agric Food Chem; 2007 May; 55(10):4043-51. PubMed ID: 17407315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.