These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 15936706)
1. Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Delaporte M; Soudant P; Moal J; Kraffe E; Marty Y; Samain JF Comp Biochem Physiol A Mol Integr Physiol; 2005 Apr; 140(4):460-70. PubMed ID: 15936706 [TBL] [Abstract][Full Text] [Related]
2. Effect of a mono-specific algal diet on immune functions in two bivalve species--Crassostrea gigas and Ruditapes philippinarum. Delaporte M; Soudant P; Moal J; Lambert C; Quéré C; Miner P; Choquet G; Paillard C; Samain JF J Exp Biol; 2003 Sep; 206(Pt 17):3053-64. PubMed ID: 12878673 [TBL] [Abstract][Full Text] [Related]
3. Lipid composition of Ruditapes philippinarum spat: effect of ration and diet quality. Fernández-Reiriz MJ; Labarta U; Albentosa M; Pérez-Camacho A Comp Biochem Physiol B Biochem Mol Biol; 2006 Jun; 144(2):229-37. PubMed ID: 16647874 [TBL] [Abstract][Full Text] [Related]
4. Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Pirini M; Manuzzi MP; Pagliarani A; Trombetti F; Borgatti AR; Ventrella V Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):616-26. PubMed ID: 17482494 [TBL] [Abstract][Full Text] [Related]
5. Membrane phospholipid composition of hemocytes in the Pacific oyster Crassostrea gigas and the Manila clam Ruditapes philippinarum. Le Grand F; Kraffe E; Marty Y; Donaghy L; Soudant P Comp Biochem Physiol A Mol Integr Physiol; 2011 Aug; 159(4):383-91. PubMed ID: 21527350 [TBL] [Abstract][Full Text] [Related]
6. Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids. Pernet F; Tremblay R; Comeau L; Guderley H J Exp Biol; 2007 Sep; 210(Pt 17):2999-3014. PubMed ID: 17704075 [TBL] [Abstract][Full Text] [Related]
7. Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application. Dunstan GA; Brown MR; Volkman JK Phytochemistry; 2005 Nov; 66(21):2557-70. PubMed ID: 16226285 [TBL] [Abstract][Full Text] [Related]
8. Effect of dietary fatty acid composition on fatty acid profiles of polar and neutral lipid tissue fractions in zebra finches, Taeniopygia guttata. McCue MD; Amitai O; Khozin-Goldberg I; McWilliams SR; Pinshow B Comp Biochem Physiol A Mol Integr Physiol; 2009 Sep; 154(1):165-72. PubMed ID: 19524058 [TBL] [Abstract][Full Text] [Related]
10. Comparison of two microalgal diets. 1. Influence on the biochemical and fatty acid compositions of raw oysters (Crassostrea gigas). Pennarun AL; Prost C; Haure J; Demaimay M J Agric Food Chem; 2003 Mar; 51(7):2006-10. PubMed ID: 12643666 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial activity, hemocyte parameters and lipid composition modulation by dietary conditioning in the Pacific oyster Crassostrea gigas. Dudognon T; Lambert C; Quere C; Auffret M; Soudant P; Kraffe E J Comp Physiol B; 2014 Apr; 184(3):303-17. PubMed ID: 24441864 [TBL] [Abstract][Full Text] [Related]
12. Liver fatty acid and element changes after partial hepatectomy in mice fed olive oil- and corn oil-enriched diets. Domitrovic R; Milin C; Radosevic-Stasic B Biol Trace Elem Res; 2006 Jan; 109(1):61-74. PubMed ID: 16388104 [TBL] [Abstract][Full Text] [Related]
13. Fatty acid composition, sarcoplasmic reticular lipid oxidation, and immunity of hard clam (Meretrix lusoria) fed different dietary microalgae. Chen SM; Tseng KY; Huang CH Fish Shellfish Immunol; 2015 Jul; 45(1):141-5. PubMed ID: 25707599 [TBL] [Abstract][Full Text] [Related]
14. Dietary palmitic acid influences LDL-mediated lymphocyte proliferation differently to other mono- and polyunsaturated fatty acids in rats. Tinahones FJ; Gómez-Zumaquero JM; Monzón A; Rojo-Martínez G; Pareja A; Morcillo S; Cardona F; Olveira G; Soriguer F Diabetes Nutr Metab; 2004 Oct; 17(5):250-8. PubMed ID: 16295046 [TBL] [Abstract][Full Text] [Related]
15. Diet preferences for specific fatty acids and their effect on composition of fat reserves in migratory Red-eyed Vireos (Vireo olivaceous). Pierce BJ; McWilliams SR; Place AR; Huguenin MA Comp Biochem Physiol A Mol Integr Physiol; 2004 Aug; 138(4):503-14. PubMed ID: 15369840 [TBL] [Abstract][Full Text] [Related]
16. Effect of dietary alpha-linolenic fatty acid derived from chia when fed as ground seed, whole seed and oil on lipid content and fatty acid composition of rat plasma. Ayerza R; Coates W Ann Nutr Metab; 2007; 51(1):27-34. PubMed ID: 17356263 [TBL] [Abstract][Full Text] [Related]
17. Three-year tracking of fatty acid composition of plasma phospholipids in healthy children. Guerra A; Demmelmair H; Toschke AM; Koletzko B Ann Nutr Metab; 2007; 51(5):433-8. PubMed ID: 18025816 [TBL] [Abstract][Full Text] [Related]
18. Maternal dietary fat alters amniotic fluid and fetal intestinal membrane essential n-6 and n-3 fatty acids in the rat. Friesen R; Innis SM Am J Physiol Gastrointest Liver Physiol; 2006 Mar; 290(3):G505-10. PubMed ID: 16282365 [TBL] [Abstract][Full Text] [Related]
19. Lipid profile of rats fed high-fat diets based on flaxseed, peanut, trout, or chicken skin. Cintra DE; Costa AV; Peluzio Mdo C; Matta SL; Silva MT; Costa NM Nutrition; 2006 Feb; 22(2):197-205. PubMed ID: 16459232 [TBL] [Abstract][Full Text] [Related]
20. Variation in fatty acid composition of Artemia salina nauplii enriched with microalgae and baker's yeast for use in larviculture. Chakraborty RD; Chakraborty K; Radhakrishnan EV J Agric Food Chem; 2007 May; 55(10):4043-51. PubMed ID: 17407315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]