BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 15937405)

  • 1. Nitric oxide-induced nitrative stress involved in microbial pathogenesis.
    Zaki MH; Akuta T; Akaike T
    J Pharmacol Sci; 2005 Jun; 98(2):117-29. PubMed ID: 15937405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrative stress through formation of 8-nitroguanosine: insights into microbial pathogenesis.
    Akuta T; Zaki MH; Yoshitake J; Okamoto T; Akaike T
    Nitric Oxide; 2006 Mar; 14(2):101-8. PubMed ID: 16309933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO.
    Akaike T; Suga M; Maeda H
    Proc Soc Exp Biol Med; 1998 Jan; 217(1):64-73. PubMed ID: 9421208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide and oxygen radicals in infection, inflammation, and cancer.
    Maeda H; Akaike T
    Biochemistry (Mosc); 1998 Jul; 63(7):854-65. PubMed ID: 9721338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of free radicals in viral pathogenesis and mutation.
    Akaike T
    Rev Med Virol; 2001; 11(2):87-101. PubMed ID: 11262528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide and virus infection.
    Akaike T; Maeda H
    Immunology; 2000 Nov; 101(3):300-8. PubMed ID: 11106932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 8-nitroguanosine formation in viral pneumonia and its implication for pathogenesis.
    Akaike T; Okamoto S; Sawa T; Yoshitake J; Tamura F; Ichimori K; Miyazaki K; Sasamoto K; Maeda H
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):685-90. PubMed ID: 12522148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-hydrolyzed in digestive tract and blood natural L-carnosine peptide ("bioactivated Jewish penicillin") as a panacea of tomorrow for various flu ailments: signaling activity attenuating nitric oxide (NO) production, cytostasis, and NO-dependent inhibition of influenza virus replication in macrophages in the human body infected with the virulent swine influenza A (H1N1) virus.
    Babizhayev MA; Deyev AI; Yegorov YE
    J Basic Clin Physiol Pharmacol; 2013; 24(1):1-26. PubMed ID: 23425625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprotective properties of nitric oxide.
    Chiueh CC
    Ann N Y Acad Sci; 1999; 890():301-11. PubMed ID: 10668435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Protein Nitration on Influenza Virus Infectivity and Immunogenicity.
    Dulin H; Hendricks N; Xu D; Gao L; Wuang K; Ai H; Hai R
    Microbiol Spectr; 2022 Dec; 10(6):e0190222. PubMed ID: 36314966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demyelination: the role of reactive oxygen and nitrogen species.
    Smith KJ; Kapoor R; Felts PA
    Brain Pathol; 1999 Jan; 9(1):69-92. PubMed ID: 9989453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Physiopathologic effects of nitric oxide and their relationship with oxidative stress].
    Carrizo PH; Dubin M; Stoppani AO
    Medicina (B Aires); 1998; 58(4):367-73. PubMed ID: 9816698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Management of the virulent influenza virus infection by oral formulation of nonhydrolized carnosine and isopeptide of carnosine attenuating proinflammatory cytokine-induced nitric oxide production.
    Babizhayev MA; Deyev AI
    Am J Ther; 2012 Jan; 19(1):e25-47. PubMed ID: 20841992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Basis of Nitrative Stress in the Pathogenesis of Pulmonary Hypertension.
    Evans CE; Zhao YY
    Adv Exp Med Biol; 2017; 967():33-45. PubMed ID: 29047079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viral mutation accelerated by nitric oxide production during infection in vivo.
    Akaike T; Fujii S; Kato A; Yoshitake J; Miyamoto Y; Sawa T; Okamoto S; Suga M; Asakawa M; Nagai Y; Maeda H
    FASEB J; 2000 Jul; 14(10):1447-54. PubMed ID: 10877838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic beta-adrenergic receptor stimulation induces cardiac apoptosis and aggravates myocardial ischemia/reperfusion injury by provoking inducible nitric-oxide synthase-mediated nitrative stress.
    Hu A; Jiao X; Gao E; Koch WJ; Sharifi-Azad S; Grunwald Z; Ma XL; Sun JZ
    J Pharmacol Exp Ther; 2006 Aug; 318(2):469-75. PubMed ID: 16574780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of iNOS-derived reactive nitrogen species and resultant nitrative stress in leukocytes-induced cardiomyocyte apoptosis after myocardial ischemia/reperfusion.
    Wang XL; Liu HR; Tao L; Liang F; Yan L; Zhao RR; Lopez BL; Christopher TA; Ma XL
    Apoptosis; 2007 Jul; 12(7):1209-17. PubMed ID: 17333318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxynitrite and hemoglobin-mediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids.
    Wang N; Li D; Lu NH; Yi L; Huang XW; Gao ZH
    J Asian Nat Prod Res; 2010 Apr; 12(4):257-64. PubMed ID: 20419535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of nitric oxide and peroxynitrite with organic molecules and ferrihorseradish peroxidase: interference with the determination of hydrogen peroxide.
    Ischiropoulos H; Nelson J; Duran D; Al-Mehdi A
    Free Radic Biol Med; 1996; 20(3):373-81. PubMed ID: 8720908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of oxidants in microbial pathophysiology.
    Miller RA; Britigan BE
    Clin Microbiol Rev; 1997 Jan; 10(1):1-18. PubMed ID: 8993856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.