BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15938630)

  • 1. An error-prone viral DNA ligase.
    Lamarche BJ; Showalter AK; Tsai MD
    Biochemistry; 2005 Jun; 44(23):8408-17. PubMed ID: 15938630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ASFV DNA polymerse X is extremely error-prone under diverse assay conditions and within multiple DNA sequence contexts.
    Lamarche BJ; Kumar S; Tsai MD
    Biochemistry; 2006 Dec; 45(49):14826-33. PubMed ID: 17144676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of damaged DNA and dNTP substrates by the error-prone DNA polymerase X from African swine fever virus.
    Kumar S; Lamarche BJ; Tsai MD
    Biochemistry; 2007 Mar; 46(12):3814-25. PubMed ID: 17335287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
    Sampoli Benítez BA; Arora K; Balistreri L; Schlick T
    J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA polymerase X of African swine fever virus: insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA.
    García-Escudero R; García-Díaz M; Salas ML; Blanco L; Salas J
    J Mol Biol; 2003 Mar; 326(5):1403-12. PubMed ID: 12595253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of a viral DNA polymerase X and evidence for a mutagenic function.
    Showalter AK; Byeon IJ; Su MI; Tsai MD
    Nat Struct Biol; 2001 Nov; 8(11):942-6. PubMed ID: 11685239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of an endonuclease IV homologue to DNA repair in the African swine fever virus.
    Lamarche BJ; Tsai MD
    Biochemistry; 2006 Mar; 45(9):2790-803. PubMed ID: 16503634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the error-prone DNA ligase of African swine fever virus identifies critical active site residues.
    Chen Y; Liu H; Yang C; Gao Y; Yu X; Chen X; Cui R; Zheng L; Li S; Li X; Ma J; Huang Z; Li J; Gan J
    Nat Commun; 2019 Jan; 10(1):387. PubMed ID: 30674878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASFV DNA polymerase extends recessed DNAs with catalytic efficiencies outperforming those exerted on gapped DNA substrates.
    Lapenna A; Stefan A; Hochkoeppler A
    Biochem Biophys Res Commun; 2021 Jan; 534():526-532. PubMed ID: 33223051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. African swine fever virus encodes a DNA ligase.
    Yáñez RJ; Viñuela E
    Virology; 1993 Mar; 193(1):531-6. PubMed ID: 8438592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of an African swine fever virus 20-kDa DNA polymerase involved in DNA repair.
    Oliveros M; Yáñez RJ; Salas ML; Salas J; Viñuela E; Blanco L
    J Biol Chem; 1997 Dec; 272(49):30899-910. PubMed ID: 9388236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the structure, catalytic activity, and fidelity of African swine fever virus DNA polymerase X by a reversible disulfide switch.
    Voehler MW; Eoff RL; McDonald WH; Guengerich FP; Stone MP
    J Biol Chem; 2009 Jul; 284(27):18434-44. PubMed ID: 19419958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.
    Wu WJ; Su MI; Wu JL; Kumar S; Lim LH; Wang CW; Nelissen FH; Chen MC; Doreleijers JF; Wijmenga SS; Tsai MD
    J Am Chem Soc; 2014 Apr; 136(13):4927-37. PubMed ID: 24617852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligation reaction specificities of an NAD(+)-dependent DNA ligase from the hyperthermophile Aquifex aeolicus.
    Tong J; Barany F; Cao W
    Nucleic Acids Res; 2000 Mar; 28(6):1447-54. PubMed ID: 10684941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human DNA ligase IV and the ligase IV/XRCC4 complex: analysis of nick ligation fidelity.
    Wang Y; Lamarche BJ; Tsai MD
    Biochemistry; 2007 May; 46(17):4962-76. PubMed ID: 17407264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of a viral DNA repair polymerase.
    Maciejewski MW; Shin R; Pan B; Marintchev A; Denninger A; Mullen MA; Chen K; Gryk MR; Mullen GP
    Nat Struct Biol; 2001 Nov; 8(11):936-41. PubMed ID: 11685238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the fidelity of Thermus thermophilus DNA ligase.
    Luo J; Bergstrom DE; Barany F
    Nucleic Acids Res; 1996 Aug; 24(15):3071-8. PubMed ID: 8760896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair.
    Kamble P; Hall K; Chandak M; Tang Q; Çağlayan M
    J Biol Chem; 2021; 296():100427. PubMed ID: 33600799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA).
    Chauleau M; Shuman S
    Nucleic Acids Res; 2016 Mar; 44(5):2298-309. PubMed ID: 26857547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.
    Lohman GJ; Bauer RJ; Nichols NM; Mazzola L; Bybee J; Rivizzigno D; Cantin E; Evans TC
    Nucleic Acids Res; 2016 Jan; 44(2):e14. PubMed ID: 26365241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.