BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 15938759)

  • 21. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
    Ikeda M; Nakagawa S
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):99-109. PubMed ID: 12743753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of truncated variants of the iron dependent transcriptional regulators from Corynebacterium diphtheriae and Mycobacterium tuberculosis.
    Oram DM; Must LM; Spinler JK; Twiddy EM; Holmes RK
    FEMS Microbiol Lett; 2005 Feb; 243(1):1-8. PubMed ID: 15667993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate.
    Nickel J; Irzik K; van Ooyen J; Eggeling L
    Mol Microbiol; 2010 Oct; 78(1):253-65. PubMed ID: 20923423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH.
    Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S
    Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum.
    Hänssler E; Müller T; Jessberger N; Völzke A; Plassmeier J; Kalinowski J; Krämer R; Burkovski A
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):625-32. PubMed ID: 17483938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
    Nešvera J; Pátek M
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1641-54. PubMed ID: 21519933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of genes that encode DtxR-like transcriptional regulators in pathogenic and saprophytic corynebacterial species.
    Oram DM; Avdalovic A; Holmes RK
    Infect Immun; 2004 Apr; 72(4):1885-95. PubMed ID: 15039307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of DtxR regulon: identification of binding sites and operons controlled by Diphtheria toxin repressor in Corynebacterium diphtheriae.
    Yellaboina S; Ranjan S; Chakhaiyar P; Hasnain SE; Ranjan A
    BMC Microbiol; 2004 Sep; 4():38. PubMed ID: 15447793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interplay between DtxR and nitric oxide reductase activities: a functional genomics approach indicating involvement of homologous protein domains in bacterial pathogenesis.
    Gupta S; Bansal S; Deb JK; Kundu B
    Int J Exp Pathol; 2007 Oct; 88(5):377-85. PubMed ID: 17877539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organization and transcriptional analysis of a six-gene cluster around the rplK-rplA operon of Corynebacterium glutamicum encoding the ribosomal proteins L11 and L1.
    Barreiro C; González-Lavado E; Martín JF
    Appl Environ Microbiol; 2001 May; 67(5):2183-90. PubMed ID: 11319098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum.
    Schaaf S; Bott M
    J Bacteriol; 2007 Jul; 189(14):5002-11. PubMed ID: 17496102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes--a genomic approach.
    Moreno-Campuzano S; Janga SC; Pérez-Rueda E
    BMC Genomics; 2006 Jun; 7():147. PubMed ID: 16772031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum.
    Engels S; Ludwig C; Schweitzer JE; Mack C; Bott M; Schaffer S
    Mol Microbiol; 2005 Jul; 57(2):576-91. PubMed ID: 15978086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Regulation of methionine/cysteine biosynthesis in Corynebacterium glutamicum and related genomes].
    Kovaleva GIu; Gel'fand MS
    Mol Biol (Mosk); 2007; 41(1):139-50. PubMed ID: 17380901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcription of Corynebacterium glutamicum genes involved in tricarboxylic acid cycle and glyoxylate cycle.
    Han SO; Inui M; Yukawa H
    J Mol Microbiol Biotechnol; 2008; 15(4):264-76. PubMed ID: 18285691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The genome stability in Corynebacterium species due to lack of the recombinational repair system.
    Nakamura Y; Nishio Y; Ikeo K; Gojobori T
    Gene; 2003 Oct; 317(1-2):149-55. PubMed ID: 14604803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector.
    Tsuchida Y; Kimura S; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1107-15. PubMed ID: 18936936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional models and structure analysis of corynemycolyltransferases in Corynebacterium glutamicum and Corynebacterium efficiens.
    Adindla S; Guruprasad K; Guruprasad L
    Int J Biol Macromol; 2004 Jun; 34(3):181-9. PubMed ID: 15225990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstitution experiments and gene deletions reveal the existence of two-component major cell wall channels in the genus Corynebacterium.
    Barth E; Barceló MA; Kläckta C; Benz R
    J Bacteriol; 2010 Feb; 192(3):786-800. PubMed ID: 19966008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction and partial characterization of a Corynebacterium pseudotuberculosis bacterial artificial chromosome library through genomic survey sequencing.
    Dorella FA; Fachin MS; Billault A; Dias Neto E; Soravito C; Oliveira SC; Meyer R; Miyoshi A; Azevedo V
    Genet Mol Res; 2006 Nov; 5(4):653-63. PubMed ID: 17183477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.