These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 15939026)

  • 1. An evaluation of the minimal constraining information during observation for movement reproduction.
    Hodges NJ; Hayes SJ; Breslin G; Williams AM
    Acta Psychol (Amst); 2005 Jul; 119(3):264-82. PubMed ID: 15939026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-point focus manipulations to determine what information is used during observational learning.
    Hayes SJ; Hodges NJ; Huys R; Mark Williams A
    Acta Psychol (Amst); 2007 Oct; 126(2):120-37. PubMed ID: 17204236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of intra- and inter-limb relative motion information in modelling a novel motor skill.
    Breslin G; Hodges NJ; Williams AM; Kremer J; Curran W
    Hum Mov Sci; 2006 Dec; 25(6):753-66. PubMed ID: 16879888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling relative motion to facilitate intra-limb coordination.
    Breslin G; Hodges NJ; Williams AM; Curran W; Kremer J
    Hum Mov Sci; 2005 Jun; 24(3):446-63. PubMed ID: 16099522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of manipulating relative and absolute motion information during observational learning of an aiming task.
    Al-Abood SA; Davids K; Bennett SJ; Ashford D; Martinez Marin M
    J Sports Sci; 2001 Jul; 19(7):507-20. PubMed ID: 11461054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning from demonstrations: the role of visual search during observational learning from video and point-light models.
    Horn RR; Williams AM; Scott MA
    J Sports Sci; 2002 Mar; 20(3):253-69. PubMed ID: 11999480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The efficacy of demonstrations in teaching children an unfamiliar movement skill: the effects of object-orientated actions and point-light demonstrations.
    Hayes SJ; Hodges NJ; Scott MA; Horn RR; Williams AM
    J Sports Sci; 2007 Mar; 25(5):559-75. PubMed ID: 17365542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What is modelled during observational learning?
    Hodges NJ; Williams AM; Hayes SJ; Breslin G
    J Sports Sci; 2007 Mar; 25(5):531-45. PubMed ID: 17365540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive mechanisms of visuomotor transformation in movement imitation: examining predictions based on models of apraxia and motor control.
    Gravenhorst RM; Walter CB
    Brain Cogn; 2009 Nov; 71(2):118-28. PubMed ID: 19473740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination changes in a discrete multi-articular action as a function of practice.
    Chow JY; Davids K; Button C; Koh M
    Acta Psychol (Amst); 2008 Jan; 127(1):163-76. PubMed ID: 17555698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pickup of essential kinematics underpins expert perception of movement patterns.
    Abernethy B; Zawi K
    J Mot Behav; 2007 Sep; 39(5):353-67. PubMed ID: 17827113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic features of movement tunes perception and action coupling.
    Pozzo T; Papaxanthis C; Petit JL; Schweighofer N; Stucchi N
    Behav Brain Res; 2006 Apr; 169(1):75-82. PubMed ID: 16430976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. M1 contributes to the intrinsic but not the extrinsic components of motor-skills.
    Romei V; Thut G; Ramos-Estebanez C; Pascual-Leone A
    Cortex; 2009 Oct; 45(9):1058-64. PubMed ID: 19243742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of information load and time on observational learning.
    Breslin G; Hodges NJ; Williams AM
    Res Q Exerc Sport; 2009 Sep; 80(3):480-90. PubMed ID: 19791634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling kinematics of memory and kinematics of movement: the conditions for a psychological relativity.
    Sarrazin JC; Giraudo MD; Vercher JL
    Hum Mov Sci; 2008 Jun; 27(3):532-50. PubMed ID: 18336943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implicit motor learning in surgery: implications for multi-tasking.
    Masters RS; Lo CY; Maxwell JP; Patil NG
    Surgery; 2008 Jan; 143(1):140-5. PubMed ID: 18154942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of multiple movement representations with practice: specificity versus flexibility.
    Soucy MC; Proteau L
    J Mot Behav; 2001 Sep; 33(3):243-54. PubMed ID: 11495829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration as a rate enhancer to changes in coordination during early skill acquisition.
    Horn RR; Williams AM; Hayes SJ; Hodges NJ; Scott MA
    J Sports Sci; 2007 Mar; 25(5):599-614. PubMed ID: 17365545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goal-directed imitation: the means to an end.
    Hayes SJ; Ashford D; Bennett SJ
    Acta Psychol (Amst); 2008 Feb; 127(2):407-15. PubMed ID: 17880901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.