BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15939123)

  • 1. Investigation of the uptake ability of fly ashes produced after lignite combustion.
    Kantiranis N; Filippidis A; Georgakopoulos A
    J Environ Manage; 2005 Jul; 76(2):119-23. PubMed ID: 15939123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the fly ashes from the lignite burning power plants of northern Greece based on their quantitative mineralogical composition.
    Kostakis G
    J Hazard Mater; 2009 Jul; 166(2-3):972-7. PubMed ID: 19155129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidised bed combustion technology.
    Koukouzas N; Ward CR; Papanikolaou D; Li Z; Ketikidis C
    J Hazard Mater; 2009 Sep; 169(1-3):100-7. PubMed ID: 19410365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralogical composition of boiler fouling and slagging deposits and their relation to fly ashes: the case of Kardia power plant.
    Kostakis G
    J Hazard Mater; 2011 Jan; 185(2-3):1012-8. PubMed ID: 21035255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants.
    Karangelos DJ; Petropoulos NP; Anagnostakis MJ; Hinis EP; Simopoulos SE
    J Environ Radioact; 2004; 77(3):233-46. PubMed ID: 15381319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Humic acid adsorption on fly ash and its derived unburned carbon.
    Wang S; Zhu ZH
    J Colloid Interface Sci; 2007 Nov; 315(1):41-6. PubMed ID: 17628583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated carbonation of municipal solid waste incineration fly ashes.
    Li X; Bertos MF; Hills CD; Carey PJ; Simon S
    Waste Manag; 2007; 27(9):1200-6. PubMed ID: 17015006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metals leaching in Indian fly ash.
    Prasad B; Mondal KK
    J Environ Sci Eng; 2008 Apr; 50(2):127-32. PubMed ID: 19295096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vapor-phase sorption of hexachlorobenzene on typical municipal solid waste (MSW) incineration fly ashes, clay minerals and activated carbon.
    Gao Y; Zhang H; Chen J
    Chemosphere; 2010 Nov; 81(8):1012-7. PubMed ID: 20875668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.
    Liu W; Hou H; Zhang C; Zhang D
    Waste Manag Res; 2009 May; 27(3):258-66. PubMed ID: 19423575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of fly ash properties from Afsin-Elbistan coal basin, Turkey.
    Ural S
    J Hazard Mater; 2005 Mar; 119(1-3):85-92. PubMed ID: 15752852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gypsum treated fly ash as a liner for waste disposal facilities.
    Sivapullaiah PV; Baig MA
    Waste Manag; 2011 Feb; 31(2):359-69. PubMed ID: 20817503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorbents for CO2 capture from high carbon fly ashes.
    Maroto-Valer MM; Lu Z; Zhang Y; Tang Z
    Waste Manag; 2008 Nov; 28(11):2320-8. PubMed ID: 18093818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.
    Kuchar D; Fukuta T; Onyango MS; Matsuda H
    Chemosphere; 2007 Apr; 67(8):1518-25. PubMed ID: 17258281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content.
    Košnář Z; Mercl F; Perná I; Tlustoš P
    Sci Total Environ; 2016 Sep; 563-564():53-61. PubMed ID: 27135566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of herbicides on coal fly ash from aqueous solutions.
    Singh N
    J Hazard Mater; 2009 Aug; 168(1):233-7. PubMed ID: 19269091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on chemical species of arsenic, selenium and antimony in fly ash from coal fuel thermal power stations.
    Narukawa T; Takatsu A; Chiba K; Riley KW; French DH
    J Environ Monit; 2005 Dec; 7(12):1342-8. PubMed ID: 16307094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes.
    Barbosa R; Lapa N; Boavida D; Lopes H; Gulyurtlu I; Mendes B
    J Hazard Mater; 2009 Oct; 170(2-3):902-9. PubMed ID: 19515486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of mercury in ash and soil samples by oxygen flask combustion method--cold vapor atomic fluorescence spectrometry (CVAFS).
    Geng W; Nakajima T; Takanashi H; Ohki A
    J Hazard Mater; 2008 Jun; 154(1-3):325-30. PubMed ID: 18023528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coal fly ash as an amendment to container substrate for Spathiphyllum production.
    Chen J; Li Y
    Bioresour Technol; 2006 Oct; 97(15):1920-6. PubMed ID: 16214336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.