BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15939401)

  • 1. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus.
    Jaeckel P; Krauss G; Menge S; Schierhorn A; Rücknagel P; Krauss GJ
    Biochem Biophys Res Commun; 2005 Jul; 333(1):150-5. PubMed ID: 15939401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of phytochelatin-cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry.
    Yen TY; Villa JA; DeWitt JG
    J Mass Spectrom; 1999 Sep; 34(9):930-41. PubMed ID: 10491589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium and heat response of the fungus Heliscus lugdunensis isolated from highly polluted and unpolluted areas.
    Miersch J; Grancharov K
    Amino Acids; 2008 Feb; 34(2):271-7. PubMed ID: 17297561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium and zinc response of the fungi Heliscus lugdunensis and Verticillium cf. alboatrum isolated from highly polluted water.
    Jaeckel P; Krauss GJ; Krauss G
    Sci Total Environ; 2005 Jun; 346(1-3):274-9. PubMed ID: 15913712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium-induced formation of sulphide and cadmium sulphide particles in the aquatic hyphomycete Heliscus lugdunensis.
    Dobritzsch D; Ganz P; Rother M; Ehrman J; Baumbach R; Miersch J
    J Trace Elem Med Biol; 2015; 31():92-7. PubMed ID: 26004898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal detoxification in eukaryotic microalgae.
    Perales-Vela HV; Peña-Castro JM; Cañizares-Villanueva RO
    Chemosphere; 2006 Jun; 64(1):1-10. PubMed ID: 16405948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus.
    Courbot M; Diez L; Ruotolo R; Chalot M; Leroy P
    Appl Environ Microbiol; 2004 Dec; 70(12):7413-7. PubMed ID: 15574943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium uptake by Caco-2 cells: effects of Cd complexation by chloride, glutathione, and phytochelatins.
    Jumarie C; Fortin C; Houde M; Campbell PG; Denizeau F
    Toxicol Appl Pharmacol; 2001 Jan; 170(1):29-38. PubMed ID: 11141353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification.
    Loebus J; Leitenmaier B; Meissner D; Braha B; Krauss GJ; Dobritzsch D; Freisinger E
    J Inorg Biochem; 2013 Oct; 127():253-60. PubMed ID: 23800411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.).
    Sun Q; Wang XR; Ding SM; Yuan XF
    Environ Toxicol; 2005 Apr; 20(2):195-201. PubMed ID: 15793816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress response in two strains of the aquatic hyphomycete Heliscus lugdunensis after exposure to cadmium and copper ions.
    Braha B; Tintemann H; Krauss G; Ehrman J; Bärlocher F; Krauss GJ
    Biometals; 2007 Feb; 20(1):93-105. PubMed ID: 16900400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat.
    Pawlik-Skowrońska B; Pirszel J; Brown MT
    Aquat Toxicol; 2007 Jul; 83(3):190-9. PubMed ID: 17532484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae).
    Torricelli E; Gorbi G; Pawlik-Skowronska B; Di Toppi LS; Corradi MG
    Aquat Toxicol; 2004 Jul; 68(4):315-23. PubMed ID: 15177949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, Crassostrea virginica Gmelin.
    Ivanina AV; Cherkasov AS; Sokolova IM
    J Exp Biol; 2008 Feb; 211(Pt 4):577-86. PubMed ID: 18245635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants.
    Mendoza-Cózatl DG; Moreno-Sánchez R
    J Theor Biol; 2006 Feb; 238(4):919-36. PubMed ID: 16125728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin.
    Kneer R; Kutchan TM; Hochberger A; Zenk MH
    Arch Microbiol; 1992; 157(4):305-10. PubMed ID: 1534214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanisms of heavy metal cadmium tolerance in plants].
    Zhang J; Shu WS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):1-8. PubMed ID: 16477124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation.
    Picault N; Cazalé AC; Beyly A; Cuiné S; Carrier P; Luu DT; Forestier C; Peltier G
    Biochimie; 2006 Nov; 88(11):1743-50. PubMed ID: 16766112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans.
    Vatamaniuk OK; Bucher EA; Ward JT; Rea PA
    J Biol Chem; 2001 Jun; 276(24):20817-20. PubMed ID: 11313333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis.
    Cobbett C; Goldsbrough P
    Annu Rev Plant Biol; 2002; 53():159-82. PubMed ID: 12221971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.