BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 15939467)

  • 1. Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D,L-lactic acid) blends.
    Simon CG; Eidelman N; Kennedy SB; Sehgal A; Khatri CA; Washburn NR
    Biomaterials; 2005 Dec; 26(34):6906-15. PubMed ID: 15939467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Combinatorial Polymer Blend Composition Gradients by FTIR Microspectroscopy.
    Eidelman N; Simon CG
    J Res Natl Inst Stand Technol; 2004; 109(2):219-31. PubMed ID: 27366606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation.
    Washburn NR; Yamada KM; Simon CG; Kennedy SB; Amis EJ
    Biomaterials; 2004; 25(7-8):1215-24. PubMed ID: 14643595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FT-IR imaging spectroscopy of phase separation in blends of poly(3-hydroxybutyrate) with poly(L-lactic acid) and poly(epsilon-caprolactone).
    Vogel C; Wessel E; Siesler HW
    Biomacromolecules; 2008 Feb; 9(2):523-7. PubMed ID: 18163580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability.
    Lim JY; Hansen JC; Siedlecki CA; Hengstebeck RW; Cheng J; Winograd N; Donahue HJ
    Biomacromolecules; 2005; 6(6):3319-27. PubMed ID: 16283761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of maleic anhydride-modified poly(D,L-lactic acid) on the adhesion, proliferation and differentiation of osteoblasts].
    Xiang Y; Wang Y; Luo Y; Zhang B; Xin J; Zheng D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Aug; 28(4):753-7. PubMed ID: 21936375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submicron poly(L-lactic acid) pillars affect fibroblast adhesion and proliferation.
    Milner KR; Siedlecki CA
    J Biomed Mater Res A; 2007 Jul; 82(1):80-91. PubMed ID: 17269138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ammonia plasma treatment on the properties and cytocompatibility of a poly(L-lactic acid) film surface.
    Jiao Y; Xu J; Zhou C
    J Biomater Sci Polym Ed; 2012; 23(6):763-77. PubMed ID: 21477458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro cytocompatibility evaluation of MGF-Ct24E chemically grafted and physically blended with maleic anhydride modified poly(D, L-lactic acid).
    Li Y; Wang Y; Wang P; Zhang B; Yan W; Sun J; Pan J
    J Biomater Sci Polym Ed; 2013; 24(7):849-64. PubMed ID: 23594073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of plasmid DNA onto N,N'- (dimethylamino)ethyl-methacrylate graft-polymerized poly-L-lactic acid film surface for promotion of in-situ gene delivery.
    Jiang T; Chang J; Wang C; Ding Z; Chen J; Zhang J; Kang ET
    Biomacromolecules; 2007 Jun; 8(6):1951-7. PubMed ID: 17472337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoresponsive terpolymeric films applicable for osteoblastic cell growth and noninvasive cell sheet harvesting.
    Kim YS; Lim JY; Donahue HJ; Lowe TL
    Tissue Eng; 2005; 11(1-2):30-40. PubMed ID: 15738659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization behaviors of poly(3-hydroxybutyrate) and poly(l-lactic acid) in their immiscible and miscible blends.
    Zhang J; Sato H; Furukawa T; Tsuji H; Noda I; Ozaki Y
    J Phys Chem B; 2006 Dec; 110(48):24463-71. PubMed ID: 17134202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates.
    Badami AS; Kreke MR; Thompson MS; Riffle JS; Goldstein AS
    Biomaterials; 2006 Feb; 27(4):596-606. PubMed ID: 16023716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Schwann cell adhesion and elongation on a topographically and chemically modified poly(L-lactic acid) film surface.
    Huang WC; Yao CK; Liao JD; Lin CC; Ju MS
    J Biomed Mater Res A; 2011 Nov; 99(2):158-65. PubMed ID: 21976440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique.
    Esmaeilzadeh J; Hesaraki S; Hadavi SM; Esfandeh M; Ebrahimzadeh MH
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():807-819. PubMed ID: 27987776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface engineering of poly(D,L-lactic acid) by entrapment of soluble eggshell membrane protein.
    Lu JW; Li Q; Qi QL; Guo ZX; Yu J
    J Biomed Mater Res A; 2009 Dec; 91(3):701-7. PubMed ID: 19048638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation pattern of Vero cells cultured on poly(L-lactic acid)/poly(hydroxybutyrate-co-hydroxyvalerate) blends.
    Santos AR; Ferreira BM; Duek EA; Dolder H; Wada RS; Wada ML
    Artif Organs; 2004 Apr; 28(4):381-9. PubMed ID: 15084200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and biocompatibility of a novel biomimetic material based on MGF-Ct24E modified poly(D, L-lactic acid).
    Li Y; Zhang B; Ruan C; Wang P; Sun J; Pan J; Wang Y
    J Biomed Mater Res A; 2012 Dec; 100(12):3496-502. PubMed ID: 22941771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous time-of-flight secondary ion MS quantitative analysis of drug surface concentration and polymer degradation kinetics in biodegradable poly(L-lactic acid) blends.
    Lee JW; Gardella JA
    Anal Chem; 2003 Jul; 75(13):2950-8. PubMed ID: 12964738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniaxial drawing and mechanical properties of poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) blends.
    Park JW; Doi Y; Iwata T
    Biomacromolecules; 2004; 5(4):1557-66. PubMed ID: 15244478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.