These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 15939514)
1. Plant-specific responses to zinc contamination in a semi-field lysimeter and on hydroponics. Bernhard R; Verkleij JA; Nelissen HJ; Vink JP Environ Pollut; 2005 Nov; 138(1):100-8. PubMed ID: 15939514 [TBL] [Abstract][Full Text] [Related]
2. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Dong Y; Zhu YG; Smith FA; Wang Y; Chen B Environ Pollut; 2008 Sep; 155(1):174-81. PubMed ID: 18060670 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
5. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related]
6. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
7. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Andrade SA; Gratão PL; Schiavinato MA; Silveira AP; Azevedo RA; Mazzafera P Chemosphere; 2009 Jun; 75(10):1363-70. PubMed ID: 19268339 [TBL] [Abstract][Full Text] [Related]
8. Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Marques AP; Oliveira RS; Rangel AO; Castro PM Environ Pollut; 2008 Feb; 151(3):608-20. PubMed ID: 17507124 [TBL] [Abstract][Full Text] [Related]
9. Morphological and physiological characteristics of rapeseed plants regenerated in vitro from thin cell layers in the presence of zinc. Ben Ghnaya A; Charles G; Hourmant A; Ben Hamida J; Branchard M C R Biol; 2007 Oct; 330(10):728-34. PubMed ID: 17905392 [TBL] [Abstract][Full Text] [Related]
10. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Bi R; Schlaak M; Siefert E; Lord R; Connolly H Chemosphere; 2011 Apr; 83(3):318-26. PubMed ID: 21237480 [TBL] [Abstract][Full Text] [Related]
11. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Benáková M; Ahmadi H; Dučaiová Z; Tylová E; Clemens S; Tůma J Environ Sci Pollut Res Int; 2017 Sep; 24(25):20705-20716. PubMed ID: 28714046 [TBL] [Abstract][Full Text] [Related]
12. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.). Tani FH; Barrington S Environ Pollut; 2005 Dec; 138(3):548-58. PubMed ID: 16043272 [TBL] [Abstract][Full Text] [Related]
13. Zinc hyperaccumulation and uptake by Potentilla griffithii Hook. Qiu R; Fang X; Tang Y; Du S; Zeng X; Brewer E Int J Phytoremediation; 2006; 8(4):299-310. PubMed ID: 17305304 [TBL] [Abstract][Full Text] [Related]
14. Interactive effects of Zn, Pb and Cd in barley. Aery NC; Rana DK J Environ Sci Eng; 2007 Jan; 49(1):71-6. PubMed ID: 18472565 [TBL] [Abstract][Full Text] [Related]
15. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Bidar G; Garçon G; Pruvot C; Dewaele D; Cazier F; Douay F; Shirali P Environ Pollut; 2007 Jun; 147(3):546-53. PubMed ID: 17141383 [TBL] [Abstract][Full Text] [Related]
16. Zinc and copper uptake by plants under two transpiration rates. Part I. Wheat (Triticum aestivum L.). Tani FH; Barrington S Environ Pollut; 2005 Dec; 138(3):538-47. PubMed ID: 16043273 [TBL] [Abstract][Full Text] [Related]
17. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884 [TBL] [Abstract][Full Text] [Related]
18. Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Deng DM; Shu WS; Zhang J; Zou HL; Lin Z; Ye ZH; Wong MH Environ Pollut; 2007 May; 147(2):381-6. PubMed ID: 16828210 [TBL] [Abstract][Full Text] [Related]
19. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Vivas A; Biró B; Ruíz-Lozano JM; Barea JM; Azcón R Chemosphere; 2006 Mar; 62(9):1523-33. PubMed ID: 16098559 [TBL] [Abstract][Full Text] [Related]
20. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies? Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]