These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15939558)

  • 1. Monte Carlo simulation of classical swine fever epidemics and control. II. Validation of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):199-205. PubMed ID: 15939558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of classical swine fever epidemics and control. I. General concepts and description of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):187-98. PubMed ID: 15908147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity analysis to evaluate the impact of uncertain factors in a scenario tree model for classical swine fever introduction.
    de Vos CJ; Saatkamp HW; Nielen M; Huirne RB
    Risk Anal; 2006 Oct; 26(5):1311-22. PubMed ID: 17054533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of control and surveillance strategies for classical swine fever using a simulation model.
    Dürr S; Zu Dohna H; Di Labio E; Carpenter TE; Doherr MG
    Prev Vet Med; 2013 Jan; 108(1):73-84. PubMed ID: 22858424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark.
    Boklund A; Goldbach SG; Uttenthal A; Alban L
    Prev Vet Med; 2008 Jul; 85(3-4):187-206. PubMed ID: 18339438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent infection probability of classical swine fever via excretions and secretions.
    Weesendorp E; Loeffen W; Stegeman A; de Vos C
    Prev Vet Med; 2011 Feb; 98(2-3):152-64. PubMed ID: 21145604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Risk increase and economic consequences of the introduction of contagious animal diseases in the Netherlands].
    Horst HS
    Tijdschr Diergeneeskd; 1999 Feb; 124(4):111-5. PubMed ID: 10081808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scenario tree modeling to analyze the probability of classical swine fever virus introduction into member states of the European Union.
    de Vos CJ; Saatkamp HW; Nielen M; Huirne RB
    Risk Anal; 2004 Feb; 24(1):237-53. PubMed ID: 15028015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the epidemiological and economic effects of control strategies against classical swine fever in Denmark.
    Boklund A; Toft N; Alban L; Uttenthal A
    Prev Vet Med; 2009 Aug; 90(3-4):180-93. PubMed ID: 19439381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated financial losses of classical swine fever epidemics in the Finnish pig production sector.
    Niemi JK; Lehtonen H; Pietola K; Lyytikäinen T; Raulo S
    Prev Vet Med; 2008 May; 84(3-4):194-212. PubMed ID: 18207589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of a time-varying force of infection and basic reproduction number with application to an outbreak of classical swine fever.
    Howard SC; Donnelly CA
    J Epidemiol Biostat; 2000; 5(3):161-8. PubMed ID: 11051112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive-multiplicative regression models for spatio-temporal epidemics.
    Höhle M
    Biom J; 2009 Dec; 51(6):961-78. PubMed ID: 20029897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using mortality data for early detection of Classical Swine Fever in The Netherlands.
    Backer JA; Brouwer H; van Schaik G; van Roermund HJ
    Prev Vet Med; 2011 Apr; 99(1):38-47. PubMed ID: 21081252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stochastic model to quantify the risk of introduction of classical swine fever virus through import of domestic and wild boars.
    Martínez-López B; Perez AM; Sánchez-Vizcaíno JM
    Epidemiol Infect; 2009 Oct; 137(10):1505-15. PubMed ID: 19243649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated detection of syndromic classical swine fever on a Finnish pig-breeding farm.
    Raulo SM; Lyytikäinen T
    Epidemiol Infect; 2007 Feb; 135(2):218-27. PubMed ID: 17291361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a real-time RT-PCR assay for rapid and specific diagnosis of Classical Swine Fever virus.
    Le Potier MF; Le Dimna M; Kuntz-Simon G; Bougeard S; Mesplède A
    Dev Biol (Basel); 2006; 126():179-86; discusssion 326-7. PubMed ID: 17058493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effectiveness of classical swine fever surveillance programmes in The Netherlands.
    Klinkenberg D; Nielen M; Mourits MC; de Jong MC
    Prev Vet Med; 2005 Jan; 67(1):19-37. PubMed ID: 15698906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the risk of classical swine fever (CSF) spread from backyard pigs to other domestic pigs by using the spatial stochastic disease spread model Be-FAST: the example of Bulgaria.
    Martínez-López B; Ivorra B; Ramos AM; Fernández-Carrión E; Alexandrov T; Sánchez-Vizcaíno JM
    Vet Microbiol; 2013 Jul; 165(1-2):79-85. PubMed ID: 23465838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstrating freedom from disease using multiple complex data sources 2: case study--classical swine fever in Denmark.
    Martin PA; Cameron AR; Barfod K; Sergeant ES; Greiner M
    Prev Vet Med; 2007 May; 79(2-4):98-115. PubMed ID: 17239459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel spatial and stochastic model to evaluate the within- and between-farm transmission of classical swine fever virus. I. General concepts and description of the model.
    Martínez-López B; Ivorra B; Ramos AM; Sánchez-Vizcaíno JM
    Vet Microbiol; 2011 Jan; 147(3-4):300-9. PubMed ID: 20708351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.