BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 15939760)

  • 1. Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation.
    Brero A; Easwaran HP; Nowak D; Grunewald I; Cremer T; Leonhardt H; Cardoso MC
    J Cell Biol; 2005 Jun; 169(5):733-43. PubMed ID: 15939760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation.
    Agarwal N; Hardt T; Brero A; Nowak D; Rothbauer U; Becker A; Leonhardt H; Cardoso MC
    Nucleic Acids Res; 2007; 35(16):5402-8. PubMed ID: 17698499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA methylation control of tissue polarity and cellular differentiation in the mammary epithelium.
    Plachot C; Lelièvre SA
    Exp Cell Res; 2004 Aug; 298(1):122-32. PubMed ID: 15242767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long non-coding RNA ChRO1 facilitates ATRX/DAXX-dependent H3.3 deposition for transcription-associated heterochromatin reorganization.
    Park J; Lee H; Han N; Kwak S; Lee HT; Kim JH; Kang K; Youn BH; Yang JH; Jeong HJ; Kang JS; Kim SY; Han JW; Youn HD; Cho EJ
    Nucleic Acids Res; 2018 Dec; 46(22):11759-11775. PubMed ID: 30335163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The essential role of histone H3 Lys9 di-methylation and MeCP2 binding in MGMT silencing with poor DNA methylation of the promoter CpG island.
    Zhao W; Soejima H; Higashimoto K; Nakagawachi T; Urano T; Kudo S; Matsukura S; Matsuo S; Joh K; Mukai T
    J Biochem; 2005 Mar; 137(3):431-40. PubMed ID: 15809347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A.
    Ma Y; Jacobs SB; Jackson-Grusby L; Mastrangelo MA; Torres-Betancourt JA; Jaenisch R; Rasmussen TP
    J Cell Sci; 2005 Apr; 118(Pt 8):1607-16. PubMed ID: 15784683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MBD2 and MeCP2 regulate distinct transitions in the stage-specific differentiation of olfactory receptor neurons.
    Macdonald JL; Verster A; Berndt A; Roskams AJ
    Mol Cell Neurosci; 2010 May; 44(1):55-67. PubMed ID: 20188178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA.
    Chandler SP; Guschin D; Landsberger N; Wolffe AP
    Biochemistry; 1999 Jun; 38(22):7008-18. PubMed ID: 10353812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATRX Contributes to MeCP2-Mediated Pericentric Heterochromatin Organization during Neural Differentiation.
    Marano D; Fioriniello S; Fiorillo F; Gibbons RJ; D'Esposito M; Della Ragione F
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31671722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36.
    Klose RJ; Yamane K; Bae Y; Zhang D; Erdjument-Bromage H; Tempst P; Wong J; Zhang Y
    Nature; 2006 Jul; 442(7100):312-6. PubMed ID: 16732292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of expression of HDAC-recruiting methyl-CpG-binding domain proteins in human cancer.
    Müller-Tidow C; Kügler K; Diederichs S; Klümpen S; Möller M; Vogt U; Metzger R; Schneider PM; Berdel WE; Serve H
    Br J Cancer; 2001 Oct; 85(8):1168-74. PubMed ID: 11710831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methyl deficiency causes reduction of the methyl-CpG-binding protein, MeCP2, in rat liver.
    Esfandiari F; Green R; Cotterman RF; Pogribny IP; James SJ; Miller JW
    Carcinogenesis; 2003 Dec; 24(12):1935-40. PubMed ID: 12949043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl CpG-binding proteins and transcriptional repression.
    Wade PA
    Bioessays; 2001 Dec; 23(12):1131-7. PubMed ID: 11746232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association by guilt: identification of DLX5 as a target for MeCP2 provides a molecular link between genomic imprinting and Rett syndrome.
    Bapat S; Galande S
    Bioessays; 2005 Jul; 27(7):676-80. PubMed ID: 15954098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic regulation of mammalian pericentric heterochromatin in vivo by HP1.
    Kourmouli N; Sun YM; van der Sar S; Singh PB; Brown JP
    Biochem Biophys Res Commun; 2005 Nov; 337(3):901-7. PubMed ID: 16213461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA binding of methyl-CpG-binding protein MeCP2 in human MCF7 cells.
    Koch C; Strätling WH
    Biochemistry; 2004 May; 43(17):5011-21. PubMed ID: 15109260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The solution structure of the domain from MeCP2 that binds to methylated DNA.
    Wakefield RI; Smith BO; Nan X; Free A; Soteriou A; Uhrin D; Bird AP; Barlow PN
    J Mol Biol; 1999 Sep; 291(5):1055-65. PubMed ID: 10518942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity in residual function of MeCP2 carrying missense mutations in the methyl CpG binding domain.
    Kudo S; Nomura Y; Segawa M; Fujita N; Nakao M; Schanen C; Tamura M
    J Med Genet; 2003 Jul; 40(7):487-93. PubMed ID: 12843318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone modifications in Rett syndrome lymphocytes: a preliminary evaluation.
    Kaufmann WE; Jarrar MH; Wang JS; Lee YJ; Reddy S; Bibat G; Naidu S
    Brain Dev; 2005 Aug; 27(5):331-9. PubMed ID: 16023547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MeCP2 and other methyl-CpG binding proteins.
    Jørgensen HF; Bird A
    Ment Retard Dev Disabil Res Rev; 2002; 8(2):87-93. PubMed ID: 12112733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.