These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15941002)

  • 21. Spontaneous secondary spiking in excitable cells.
    Enns-Ruttan JS; Miura RM
    J Theor Biol; 2000 Jul; 205(2):181-99. PubMed ID: 10873431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic resonance in a Hodgkin-Huxley neuron in the absence of external noise.
    Chik DT; Wang Y; Wang ZD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021913. PubMed ID: 11497626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies for improving neural signal detection using a neural-electronic interface.
    Szlavik RB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):1-8. PubMed ID: 12797719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered neuronal excitability in a Hodgkin-Huxley model incorporating channelopathies of the delayed rectifier potassium channel.
    Hafez OA; Gottschalk A
    J Comput Neurosci; 2020 Nov; 48(4):377-386. PubMed ID: 33063225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hopf bifurcations in multiple-parameter space of the hodgkin-huxley equations II. Singularity theoretic approach and highly degenerate bifurcations.
    Fukai H; Nomura T; Doi S; Sato S
    Biol Cybern; 2000 Mar; 82(3):223-9. PubMed ID: 10664109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of cooperative ion-channel interactions on the dynamics of excitable membranes.
    Zarubin D; Zhuchkova E; Schreiber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061904. PubMed ID: 23005124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of frequency-dependent membrane capacitance on neural excitability.
    Howell B; Medina LE; Grill WM
    J Neural Eng; 2015 Oct; 12(5):056015-56015. PubMed ID: 26348707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling of time disparity detection by the Hodgkin-Huxley equations.
    Takagi H; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Apr; 189(4):257-62. PubMed ID: 12743730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales.
    Rubin J; Wechselberger M
    Chaos; 2008 Mar; 18(1):015105. PubMed ID: 18377086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mode-locking behavior of Izhikevich neurons under periodic external forcing.
    Farokhniaee A; Large EW
    Phys Rev E; 2017 Jun; 95(6-1):062414. PubMed ID: 28709287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival.
    Jolivet R; Gerstner W
    J Physiol Paris; 2004; 98(4-6):442-51. PubMed ID: 16274972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silicon modeling of the Mihalaş-Niebur neuron.
    Folowosele F; Hamilton TJ; Etienne-Cummings R
    IEEE Trans Neural Netw; 2011 Dec; 22(12):1915-27. PubMed ID: 21990331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of continuous and discrete stochastic ion channel models.
    Dangerfield CE; Kay D; Burrage K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():704-7. PubMed ID: 22254407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hysteresis and bistability in a realistic cell model for calcium oscillations and action potential firing.
    Kusters JM; Cortes JM; van Meerwijk WP; Ypey DL; Theuvenet AP; Gielen CC
    Phys Rev Lett; 2007 Mar; 98(9):098107. PubMed ID: 17359204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A generalized Leaky Integrate-and-Fire neuron model with fast implementation method.
    Wang Z; Guo L; Adjouadi M
    Int J Neural Syst; 2014 Aug; 24(5):1440004. PubMed ID: 24875788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Change in types of neuronal excitability via bifurcation control.
    Xie Y; Aihara K; Kang YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021917. PubMed ID: 18352061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From Squid to Mammals with the HH Model through the Nav Channels' Half-Activation-Voltage Parameter.
    Krouchev NI; Rattay F; Sawan M; Vinet A
    PLoS One; 2015; 10(12):e0143570. PubMed ID: 26629692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistent membranous cross correlations due to the multiplicity of gates in ion channels.
    Güler M
    J Comput Neurosci; 2011 Nov; 31(3):713-24. PubMed ID: 21584774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ionic channel density of excitable membranes can act a bifurcation parameter.
    Holden AV; Yoda M
    Biol Cybern; 1981; 42(1):29-38. PubMed ID: 6275915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model Order and Identifiability of Non-Linear Biological Systems in Stable Oscillation.
    Wigren T
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1479-84. PubMed ID: 26671817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.