BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15941039)

  • 21. Estimation of mechanical dispersion and dispersivity in a soil-gas system by column experiments and the dusty gas model.
    Hibi Y; Kanou Y; Ohira Y
    J Contam Hydrol; 2012 Apr; 131(1-4):39-53. PubMed ID: 22326690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption study of alkyl-silicas and methylsiloxy-silicas.
    Roshchin TM; Shonia NK; Kazmina AA; Gurevich KB; Fadeev AY
    J Chromatogr A; 2001 Oct; 931(1-2):119-27. PubMed ID: 11695514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pore structure and sorption properties of silica aerogels studied by magnetic resonance imaging and pulsed-field gradient spectroscopy.
    Gregory DM; Botto RE
    Appl Spectrosc; 2003 Mar; 57(3):245-50. PubMed ID: 14658614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organoindium-modified monodisperse ellipsoid-/platelet-like periodic mesoporous silicas.
    Liang Y; Meixner M
    Dalton Trans; 2017 Jun; 46(23):7495-7505. PubMed ID: 28561834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental and numerical validation of the effective medium theory for the B-term band broadening in 1st and 2nd generation monolithic silica columns.
    Deridder S; Vanmessen A; Nakanishi K; Desmet G; Cabooter D
    J Chromatogr A; 2014 Jul; 1351():46-55. PubMed ID: 24909439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.
    Wang J; Krishna R; Yang J; Deng S
    Environ Sci Technol; 2015 Aug; 49(15):9364-73. PubMed ID: 26114815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMR provides checklist of generic properties for atomic-scale models of periodic mesoporous silicas.
    Shenderovich IG; Mauder D; Akcakayiran D; Buntkowsky G; Limbach HH; Findenegg GH
    J Phys Chem B; 2007 Oct; 111(42):12088-96. PubMed ID: 17915913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments.
    Larriba-Andaluz C; Fernández-García J; Ewing MA; Hogan CJ; Clemmer DE
    Phys Chem Chem Phys; 2015 Jun; 17(22):15019-29. PubMed ID: 25988389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An inverse gas chromatographic methodology for studying gas-liquid mass transfer.
    Paloglou A; Martakidis K; Gavril D
    J Chromatogr A; 2017 Jan; 1480():83-92. PubMed ID: 27993392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of relative humidity on the properties of examined materials by means of inverse gas chromatography.
    Strzemiecka B; Kołodziejek J; Kasperkowiak M; Voelkel A
    J Chromatogr A; 2013 Jan; 1271(1):201-6. PubMed ID: 23219027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cosorption effect in gas chromatography: flow fluctuations caused by adsorbing carrier gases.
    Matuszak D; Gaddy GD; Aranovich GL; Donohue MD
    J Chromatogr A; 2005 Jan; 1063(1-2):171-80. PubMed ID: 15700469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-resolved determination of surface diffusion coefficients for physically adsorbed or chemisorbed species on heterogeneous surfaces, by inverse gas chromatography.
    Katsanos NA; Gavril D; Karaiskakis G
    J Chromatogr A; 2003 Jan; 983(1-2):177-93. PubMed ID: 12568381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time distribution of adsorption entropy of gases on heterogeneous surfaces by reversed-flow gas chromatography.
    Katsanos NA; Kapolos J; Gavril D; Bakaoukas N; Loukopoulos V; Koliadima A; Karaiskakis G
    J Chromatogr A; 2006 Sep; 1127(1-2):221-7. PubMed ID: 16806242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gas phase dispersion in compost as a function of different water contents and air flow rates.
    Sharma P; Poulsen TG
    J Contam Hydrol; 2009 Jul; 107(3-4):101-7. PubMed ID: 19419792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatographic characterisation of ordered mesoporous silicas. Part II: Acceptor-donor properties.
    Grajek H; Paciura-Zadrozna J; Witkiewicz Z
    J Chromatogr A; 2010 Apr; 1217(18):3116-27. PubMed ID: 20356596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-resolved chromatographic analysis and mechanisms in adsorption and catalysis.
    Roubani-Kalantzopoulou F
    J Chromatogr A; 2009 Mar; 1216(10):1567-606. PubMed ID: 19150072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous silicon surface modification via a microwave-induced in situ cyclic disulfide (S-S) cleavage and Si-S bond formation.
    Oh JH; Um H; Park YK; Kim M; Kim D; Bang EK; Kang RH; Kim D
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113055. PubMed ID: 36463610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticles of mesoporous SO3H-functionalized Si-MCM-41 with superior proton conductivity.
    Marschall R; Bannat I; Feldhoff A; Wang L; Lu GQ; Wark M
    Small; 2009 Apr; 5(7):854-9. PubMed ID: 19226596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column.
    Meyers JJ; Liapis AI
    J Chromatogr A; 1999 Aug; 852(1):3-23. PubMed ID: 10480225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mathematical modeling of drug release from nanostructured porous Si: combining carrier erosion and hindered drug diffusion for predicting release kinetics.
    Tzur-Balter A; Young JM; Bonanno-Young LM; Segal E
    Acta Biomater; 2013 Sep; 9(9):8346-53. PubMed ID: 23770226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.