BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15941239)

  • 1. MauG-dependent in vitro biosynthesis of tryptophan tryptophylquinone in methylamine dehydrogenase.
    Wang Y; Li X; Jones LH; Pearson AR; Wilmot CM; Davidson VL
    J Am Chem Soc; 2005 Jun; 127(23):8258-9. PubMed ID: 15941239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation.
    Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM
    Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis.
    Wang Y; Graichen ME; Liu A; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2003 Jun; 42(24):7318-25. PubMed ID: 12809487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Tarboush NA; Jensen LM; Yukl ET; Geng J; Liu A; Wilmot CM; Davidson VL
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16956-61. PubMed ID: 21969534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex.
    Jensen LM; Sanishvili R; Davidson VL; Wilmot CM
    Science; 2010 Mar; 327(5971):1392-4. PubMed ID: 20223990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic possibilities in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Li X; Jones LH; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2006 Nov; 45(44):13276-83. PubMed ID: 17073448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone.
    Li X; Fu R; Liu A; Davidson VL
    Biochemistry; 2008 Mar; 47(9):2908-12. PubMed ID: 18220357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification.
    Davidson VL; Liu A
    Biochim Biophys Acta; 2012 Nov; 1824(11):1299-305. PubMed ID: 22314272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site aspartate residues are critical for tryptophan tryptophylquinone biogenesis in methylamine dehydrogenase.
    Jones LH; Pearson AR; Tang Y; Wilmot CM; Davidson VL
    J Biol Chem; 2005 Apr; 280(17):17392-6. PubMed ID: 15734739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan tryptophylquinone cofactor biogenesis in the aromatic amine dehydrogenase of Alcaligenes faecalis. Cofactor assembly and catalytic properties of recombinant enzyme expressed in Paracoccus denitrificans.
    Hothi P; Khadra KA; Combe JP; Leys D; Scrutton NS
    FEBS J; 2005 Nov; 272(22):5894-909. PubMed ID: 16279953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of CO and NO adducts of MauG in complex with pre-methylamine dehydrogenase: implications for the mechanism of dioxygen activation.
    Yukl ET; Goblirsch BR; Davidson VL; Wilmot CM
    Biochemistry; 2011 Apr; 50(14):2931-8. PubMed ID: 21355604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG.
    Feng M; Jensen LM; Yukl ET; Wei X; Liu A; Wilmot CM; Davidson VL
    Biochemistry; 2012 Feb; 51(8):1598-606. PubMed ID: 22299652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotope labeling studies reveal the order of oxygen incorporation into the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
    Pearson AR; Marimanikkuppam S; Li X; Davidson VL; Wilmot CM
    J Am Chem Soc; 2006 Sep; 128(38):12416-7. PubMed ID: 16984182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic mechanism for the initial steps in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Lee S; Shin S; Li X; Davidson VL
    Biochemistry; 2009 Mar; 48(11):2442-7. PubMed ID: 19196017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, function, and applications of tryptophan tryptophylquinone enzymes.
    Davidson VL
    Adv Exp Med Biol; 1999; 467():587-95. PubMed ID: 10721104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis.
    Shin S; Feng M; Chen Y; Jensen LM; Tachikawa H; Wilmot CM; Liu A; Davidson VL
    Biochemistry; 2011 Jan; 50(1):144-50. PubMed ID: 21128656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of mau genes involved in methylamine metabolism in Paracoccus denitrificans.
    van der Palen CJ; Slotboom DJ; Jongejan L; Reijnders WN; Harms N; Duine JA; van Spanning RJ
    Eur J Biochem; 1995 Jun; 230(3):860-71. PubMed ID: 7601147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase.
    Shin S; Abu Tarboush N; Davidson VL
    Biochemistry; 2010 Jul; 49(27):5810-6. PubMed ID: 20540536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active-site residues are critical for the folding and stability of methylamine dehydrogenase.
    Sun D; Jones LH; Mathews FS; Davidson VL
    Protein Eng; 2001 Sep; 14(9):675-81. PubMed ID: 11707614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MauG: a di-heme enzyme required for methylamine dehydrogenase maturation.
    Wilmot CM; Yukl ET
    Dalton Trans; 2013 Mar; 42(9):3127-35. PubMed ID: 23086017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.