BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15941245)

  • 1. Sensing of antipyretic carboxylates by simple chromogenic calix[4]pyrroles.
    Nishiyabu R; Anzenbacher P
    J Am Chem Soc; 2005 Jun; 127(23):8270-1. PubMed ID: 15941245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, structure, anion binding, and sensing by calix[4]pyrrole isomers.
    Nishiyabu R; Palacios MA; Dehaen W; Anzenbacher P
    J Am Chem Soc; 2006 Sep; 128(35):11496-504. PubMed ID: 16939273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calix[4]arenes containing ferrocene amide as carboxylate anion receptors and sensors.
    Tomapatanaget B; Tuntulani T; Chailapakul O
    Org Lett; 2003 May; 5(9):1539-42. PubMed ID: 12713318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenyl-calix[4]arene-based fluorescent sensors: cooperative binding for carboxylates.
    Sun XH; Li W; Xia PF; Luo HB; Wei Y; Wong MS; Cheng YK; Shuang S
    J Org Chem; 2007 Mar; 72(7):2419-26. PubMed ID: 17343417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A binol-strapped calix[4]pyrrole as a model chirogenic receptor for the enantioselective recognition of carboxylate anions.
    Miyaji H; Hong SJ; Jeong SD; Yoon DW; Na HK; Hong J; Ham S; Sessler JL; Lee CH
    Angew Chem Int Ed Engl; 2007; 46(14):2508-11. PubMed ID: 17309086
    [No Abstract]   [Full Text] [Related]  

  • 6. Beta-vinyl substituted calix[4]pyrrole as a selective ratiometric sensor for cyanide anion.
    Hong SJ; Yoo J; Kim SH; Kim JS; Yoon J; Lee CH
    Chem Commun (Camb); 2009 Jan; (2):189-91. PubMed ID: 19099064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and spectrometric studies of anion recognition with calix[4]pyrroles in different reaction conditions.
    Giri NG; Chauhan SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):297-304. PubMed ID: 19616470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calix[4]pyrrole-capped metalloporphyrins as ditopic receptor models for anions.
    Panda PK; Lee CH
    Org Lett; 2004 Mar; 6(5):671-4. PubMed ID: 14986946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric recognizing of biologically important anions based on anion-induced tautomerism of the sensor.
    Shao J; Yu X; Lin H; Lin H
    J Mol Recognit; 2008; 21(6):425-30. PubMed ID: 18853467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective sensing of anions with calix[4]pyrroles strapped with chromogenic dipyrrolylquinoxalines.
    Yoo J; Kim MS; Hong SJ; Sessler JL; Lee CH
    J Org Chem; 2009 Feb; 74(3):1065-9. PubMed ID: 19093780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inversion of selectivity in anion recognition with conformationally blocked calix[4]pyrroles.
    Gotor R; Costero AM; Gil S; Parra M; Ochando LE; Chulvi K
    Org Biomol Chem; 2012 Nov; 10(42):8445-51. PubMed ID: 23015107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric recognition of anions using preorganized tetra-amidourea derived calix[4]arene sensors.
    Quinlan E; Matthews SE; Gunnlaugsson T
    J Org Chem; 2007 Sep; 72(20):7497-503. PubMed ID: 17725366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metalloporphyrin-capped calix[4]pyrroles: heteroditopic receptor models for anion recognition and ligand fixation.
    Panda PK; Lee CH
    J Org Chem; 2005 Apr; 70(8):3148-56. PubMed ID: 15822977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calix[6]pyrrole and hybrid calix[n]furan[m]pyrroles (n+m=6): syntheses and host-guest chemistry.
    Cafeo G; Kohnke FH; La Torre GL; Parisi MF; Pistone Nascone R; White AJ; Williams DJ
    Chemistry; 2002 Jul; 8(14):3148-56. PubMed ID: 12203344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified calix[4]pyrrole receptor: solution thermodynamics of anion complexation and a preliminary account on the phosphate extraction ability of its oligomer.
    de Namor AF; Shehab M; Khalife R; Abbas I
    J Phys Chem B; 2007 Oct; 111(42):12177-84. PubMed ID: 17918882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cis- and trans-strapped calix[4]pyrroles bearing phthalamide linkers: synthesis and anion-binding properties.
    Lee CH; Lee JS; Na HK; Yoon DW; Miyaji H; Cho WS; Sessler JL
    J Org Chem; 2005 Mar; 70(6):2067-74. PubMed ID: 15760189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calix[4]arenes containing thiourea and amide moieties: neutral receptors towards alpha,omega-dicarboxylate anions.
    Liu SY; He YB; Wu JL; Wei LH; Qin HJ; Meng LZ; Hu L
    Org Biomol Chem; 2004 Jun; 2(11):1582-6. PubMed ID: 15162208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host-guest chemistry of aromatic-amide-linked bis- and tris-calix[4]pyrroles with bis-carboxylates and citrate anion.
    Cafeo G; Gattuso G; Kohnke FH; Papanikolaou G; Profumo A; Rosano C
    Chemistry; 2014 Feb; 20(6):1658-68. PubMed ID: 24402826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calix[4]pyrrole-based anion transporters with tuneable transport properties.
    Yano M; Tong CC; Light ME; Schmidtchen FP; Gale PA
    Org Biomol Chem; 2010 Oct; 8(19):4356-63. PubMed ID: 20676429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrathiafulvalene-calix[4]pyrroles: synthesis, anion binding, and electrochemical properties.
    Nielsen KA; Cho WS; Lyskawa J; Levillain E; Lynch VM; Sessler JL; Jeppesen JO
    J Am Chem Soc; 2006 Feb; 128(7):2444-51. PubMed ID: 16478201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.