These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15941277)

  • 1. Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump.
    Park J; Koo B; Yoon KY; Hwang Y; Kang M; Park JG; Hyeon T
    J Am Chem Soc; 2005 Jun; 127(23):8433-40. PubMed ID: 15941277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of phase in phosphide nanoparticles produced by metal nanoparticle transformation: Fe2P and FeP.
    Muthuswamy E; Kharel PR; Lawes G; Brock SL
    ACS Nano; 2009 Aug; 3(8):2383-93. PubMed ID: 19653639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous phase- and size-controlled synthesis of TiO(2) nanorods via non-hydrolytic sol-gel reaction of syringe pump delivered precursors.
    Koo B; Park J; Kim Y; Choi SH; Sung YE; Hyeon T
    J Phys Chem B; 2006 Dec; 110(48):24318-23. PubMed ID: 17134182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism.
    Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T
    J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-controlled synthesis of transition-metal phosphide nanowires by Ullmann-type reactions.
    Wang J; Yang Q; Zhang Z; Sun S
    Chemistry; 2010 Jul; 16(26):7916-24. PubMed ID: 20491119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli.
    Joo J; Kwon SG; Yu T; Cho M; Lee J; Yoon J; Hyeon T
    J Phys Chem B; 2005 Aug; 109(32):15297-302. PubMed ID: 16852938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization, and self-assembly of pencil-shaped CoO nanorods.
    An K; Lee N; Park J; Kim SC; Hwang Y; Park JG; Kim JY; Park JH; Han MJ; Yu J; Hyeon T
    J Am Chem Soc; 2006 Aug; 128(30):9753-60. PubMed ID: 16866531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel synthesis of magnetic Fe(2)P nanorods from thermal decomposition of continuously delivered precursors using a syringe pump.
    Park J; Koo B; Hwang Y; Bae C; An K; Park JG; Park HM; Hyeon T
    Angew Chem Int Ed Engl; 2004 Apr; 43(17):2282-5. PubMed ID: 15108145
    [No Abstract]   [Full Text] [Related]  

  • 10. Phase-selective synthesis of nickel phosphide in high-boiling solvent for all-solid-state lithium secondary batteries.
    Aso K; Hayashi A; Tatsumisago M
    Inorg Chem; 2011 Nov; 50(21):10820-4. PubMed ID: 21967096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition metal trifluoroacetates (M = Fe, Co, Mn) as precursors for uniform colloidal metal difluoride and phosphide nanoparticles.
    Guntlin CP; Kravchyk KV; Erni R; Kovalenko MV
    Sci Rep; 2019 Apr; 9(1):6613. PubMed ID: 31036858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires.
    Qian C; Kim F; Ma L; Tsui F; Yang P; Liu J
    J Am Chem Soc; 2004 Feb; 126(4):1195-8. PubMed ID: 14746490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ternary cobalt-iron phosphide nanocrystals with controlled compositions, properties, and morphologies from nanorods and nanorice to split nanostructures.
    Ye E; Zhang SY; Lim SH; Bosman M; Zhang Z; Win KY; Han MY
    Chemistry; 2011 May; 17(21):5982-8. PubMed ID: 21491516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation does not (always) kill reactivity of transition metals: solution-phase conversion of nanoscale transition metal oxides to phosphides and sulfides.
    Muthuswamy E; Brock SL
    J Am Chem Soc; 2010 Nov; 132(45):15849-51. PubMed ID: 20964294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a general strategy for the synthesis of heterobimetallic coordination complexes for use as precursors to metal oxide materials: synthesis, characterization, and thermal decomposition of Bi(2)(Hsal)(6).M(acac)(3) (M = Al, Co, V, Fe, Cr).
    Thurston JH; Trahan D; Ould-Ely T; Whitmire KH
    Inorg Chem; 2004 May; 43(10):3299-305. PubMed ID: 15132640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinatively induced length control and photoluminescence of W18O49 nanorods.
    Woo K; Hong J; Ahn JP; Park JK; Kim KJ
    Inorg Chem; 2005 Oct; 44(20):7171-4. PubMed ID: 16180880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition.
    Colak L; Hadjipanayis GC
    Nanotechnology; 2009 Dec; 20(48):485602. PubMed ID: 19880977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of Co and Ni complexes stabilized by keto- and acetamide-derived P,O-type phosphine ligands.
    Agostinho M; Rosa V; Avilés T; Welter R; Braunstein P
    Dalton Trans; 2009 Feb; (5):814-22. PubMed ID: 19156275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of ionic liquids in the synthesis of nanocrystals and nanorods of semiconducting metal chalcogenides.
    Biswas K; Rao CN
    Chemistry; 2007; 13(21):6123-9. PubMed ID: 17497619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of InP nanofibers from tri(m-tolyl)phosphine: an alternative route to metal phosphide nanostructures.
    Wang J; Yang Q; Zhang Z; Li T; Zhang S
    Dalton Trans; 2010 Jan; (1):227-33. PubMed ID: 20023954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.