BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15941383)

  • 1. Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganisms.
    González-Toril E; Martínez-Frías J; Gómez Gómez JM; Rull F; Amils R
    Astrobiology; 2005 Jun; 5(3):406-14. PubMed ID: 15941383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms.
    Dopson M; Halinen AK; Rahunen N; Ozkaya B; Sahinkaya E; Kaksonen AH; Lindström EB; Puhakka JA
    Biotechnol Bioeng; 2007 Aug; 97(5):1205-15. PubMed ID: 17187443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.
    Li X; Mercado R; Kernan T; West AC; Banta S
    Biotechnol Bioeng; 2014 Oct; 111(10):1940-8. PubMed ID: 24771134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of capillary electrophoresis combined with conductometric and UV detection to monitor meteorite simulant bioleaching by Acidithiobacillus ferrooxidans.
    Gonçalves Silva G; Yamassaki de Almeida E; Seber P; Henrique Settanni P; Pereira de Oliveira A; Ferreira Santos MS; Lucio do Lago C; Cieslarova Z; Rodrigues F
    Electrophoresis; 2018 Nov; 39(22):2898-2905. PubMed ID: 30229957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Siderite and vivianite as energy sources for the extreme acidophilic bacterium Acidithiobacillus ferrooxidans in the context of mars habitability.
    Silva GG; Vincenzi RA; de Araujo GG; Venceslau SJS; Rodrigues F
    Sci Rep; 2024 Jun; 14(1):14885. PubMed ID: 38937525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox stress response and UV tolerance in the acidophilic iron-oxidizing bacteria Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans.
    Farías R; Norambuena J; Ferrer A; Camejo P; Zapata C; Chávez R; Orellana O; Levicán G
    Res Microbiol; 2021; 172(3):103833. PubMed ID: 33901608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The growth, ferrous iron oxidation and ultrastructure of Acidithiobacillus ferrooxidans in the presence of dibutyl phthalate.
    Matlakowska R; Skudlarska E; Skłodowska A
    Pol J Microbiol; 2006; 55(3):203-10. PubMed ID: 17338273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.
    Bonnefoy V; Holmes DS
    Environ Microbiol; 2012 Jul; 14(7):1597-611. PubMed ID: 22050575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.
    Kernan T; Majumdar S; Li X; Guan J; West AC; Banta S
    Biotechnol Bioeng; 2016 Jan; 113(1):189-97. PubMed ID: 26174759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.
    Ebrahimi S; Fernández Morales FJ; Kleerebezem R; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2005 May; 90(4):462-72. PubMed ID: 15772947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the pathways of iron- and sulfur-oxidation, and biofilm formation from the chemolithotrophic acidophile Acidithiobacillus ferrivorans CF27.
    Talla E; Hedrich S; Mangenot S; Ji B; Johnson DB; Barbe V; Bonnefoy V
    Res Microbiol; 2014 Nov; 165(9):753-60. PubMed ID: 25154051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans.
    Bryan CG; Davis-Belmar CS; van Wyk N; Fraser MK; Dew D; Rautenbach GF; Harrison ST
    Biotechnol Bioeng; 2012 Jul; 109(7):1693-703. PubMed ID: 22383083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Leaching of copper ore of the Udokanskoe deposit at low temperatures by an association of acidophilic chemolithotrophic microorganisms].
    Kondrat'eva TF; Pivovarova TA; Krylova LN; Melamud VS; Adamov EV; Karavaĭko GI
    Prikl Biokhim Mikrobiol; 2011; 47(5):572-8. PubMed ID: 22232899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium.
    Hedrich S; Johnson DB
    Int J Syst Evol Microbiol; 2013 Nov; 63(Pt 11):4018-4025. PubMed ID: 23710060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.
    Nancucheo I; Grail BM; Hilario F; du Plessis C; Johnson DB
    Appl Microbiol Biotechnol; 2014; 98(14):6297-305. PubMed ID: 24687752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction.
    Kucera J; Sedo O; Potesil D; Janiczek O; Zdrahal Z; Mandl M
    Res Microbiol; 2016 Sep; 167(7):587-94. PubMed ID: 27394989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic engineering of the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans.
    Jung H; Inaba Y; Banta S
    Trends Biotechnol; 2022 Jun; 40(6):677-692. PubMed ID: 34794837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species.
    Bellenberg S; Barthen R; Boretska M; Zhang R; Sand W; Vera M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1435-49. PubMed ID: 25381488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial oxidation of ferrous iron at low temperatures.
    Kupka D; Rzhepishevska OI; Dopson M; Lindström EB; Karnachuk OV; Tuovinen OH
    Biotechnol Bioeng; 2007 Aug; 97(6):1470-8. PubMed ID: 17304566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.
    Hedrich S; Johnson DB
    FEMS Microbiol Lett; 2013 Dec; 349(1):40-5. PubMed ID: 24117601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.