BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15942685)

  • 1. Roles of His9 (P2 subsite) and His13 (P3' subsite) in angiotensinogen for catalytic reaction of renin.
    Nabi AH; Uddin MN; Nakagawa T; Orihashi T; Ebihara A; Iwasawa A; Nakamura Y; Suzuki F
    Int J Mol Med; 2005 Jul; 16(1):103-7. PubMed ID: 15942685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The coexistence of Ser84 in renin and His13 in angiotensinogen brings a pH profile of two separate peaks to the reaction of human renin and sheep angiotensinogen.
    Iwata H; Nakagawa T; Yoshioka Y; Kagei K; Imada K; Nakane C; Fujita H; Suzuki F; Nakamura Y
    Biosci Biotechnol Biochem; 2008 Jan; 72(1):179-85. PubMed ID: 18175911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of glycosylation of the residue at position 14 in ovine angiotensinogen on the human renin reaction.
    Inui Y; Orihashi T; Nakagawa T; Ebihara A; Suzuki F; Nakamura Y
    Biosci Biotechnol Biochem; 1998 Aug; 62(8):1612-4. PubMed ID: 9757569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two peaks in pH dependence of renin-angiotensinogen reaction.
    Nasir UM; Takahashi K; Nagai T; Nakagawa T; Suzuki F; Nakamura Y
    Biosci Biotechnol Biochem; 1998 Feb; 62(2):338-40. PubMed ID: 9532792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ser84 of human renin contributes to the biphasic pH dependence of the renin-angiotensinogen reaction.
    Iwata H; Nakagawa T; Nishiuchi K; Hiratsuka T; Satou R; Yoshioka Y; Fukui Y; Suzuki F; Nakamura Y
    Biosci Biotechnol Biochem; 2007 May; 71(5):1279-85. PubMed ID: 17485830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The His-Pro-Phe motif of angiotensinogen is a crucial determinant of the substrate specificity of renin.
    Nakagawa T; Akaki J; Satou R; Takaya M; Iwata H; Katsurada A; Nishiuchi K; Ohmura Y; Suzuki F; Nakamura Y
    Biol Chem; 2007 Feb; 388(2):237-46. PubMed ID: 17261087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-dependent inactivation and reactivation of recombinant sheep angiotensinogen.
    Nagase M; Suzuki F; Takahashi A; Fujimori M; Sawai Y; Nakamura Y
    Biosci Biotechnol Biochem; 1995 Apr; 59(4):765-6. PubMed ID: 7772849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR determination of pKa values for Asp, Glu, His, and Lys mutants at each variable contiguous enzyme-inhibitor contact position of the turkey ovomucoid third domain.
    Song J; Laskowski M; Qasim MA; Markley JL
    Biochemistry; 2003 Mar; 42(10):2847-56. PubMed ID: 12627950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity and inhibitor structure-activity relationships of recombinant human renin: implications in the in vivo evaluation of renin inhibitors.
    Evans DB; Cornette JC; Sawyer TK; Staples DJ; de Vaux AE; Sharma SK
    Biotechnol Appl Biochem; 1990 Apr; 12(2):161-75. PubMed ID: 2184838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive intramolecularly quenched fluorogenic substrates for renin based on the combination of L-2-amino-3-(7-methoxy-4-coumaryl)propionic acid with 2,4-dinitrophenyl groups at various positions.
    Paschalidou K; Neumann U; Gerhartz B; Tzougraki C
    Biochem J; 2004 Sep; 382(Pt 3):1031-8. PubMed ID: 15233625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine-83 of human renin contributes to biphasic pH dependence of the renin-angiotensinogen reaction.
    Nasir UM; Suzuki F; Nagai T; Nakagawa T; Nakamura Y
    Biosci Biotechnol Biochem; 1999 Jun; 63(6):1143-5. PubMed ID: 10427707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of recombinant human renin: kinetics, pH-stability, and peptidomimetic inhibitor binding.
    Holzman TF; Chung CC; Edalji R; Egan DA; Martin M; Gubbins EJ; Krafft GA; Wang GT; Thomas AM; Rosenberg SH
    J Protein Chem; 1991 Oct; 10(5):553-63. PubMed ID: 1799412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of human angiotensinogen (1-17) containing one of the putative glycosylation binding sites and its hydrolysis by human renin and porcine pepsin.
    Hirata IY; Boschcov P; Oliveira MC; Juliano MA; Miranda A; Chagas JR; Tsuboi S; Okada Y; Juliano L
    Int J Pept Protein Res; 1991 Oct; 38(4):298-307. PubMed ID: 1797705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a human angiotensinogen cleaved in its reactive center loop by a proteolytic activity from Chinese hamster ovary cells.
    Célérier J; Schmid G; Le Caer JP; Gimenez-Roqueplo AP; Bur D; Friedlein A; Langen H; Corvol P; Jeunemaitre X
    J Biol Chem; 2000 Apr; 275(14):10648-54. PubMed ID: 10744761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of recombinant human renal renin: effect of histidine in the P2 subsite on pH dependence.
    Green DW; Aykent S; Gierse JK; Zupec ME
    Biochemistry; 1990 Mar; 29(12):3126-33. PubMed ID: 2186807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive feedback of hepatic angiotensinogen expression in silver sea bream (Sparus sarba).
    Wong MK; Ge W; Woo NY
    Mol Cell Endocrinol; 2007 Jan; 263(1-2):103-11. PubMed ID: 17027145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensinogen cleavage by renin: importance of a structurally constrained N-terminus.
    Streatfeild-James RM; Williamson D; Pike RN; Tewksbury D; Carrell RW; Coughlin PB
    FEBS Lett; 1998 Oct; 436(2):267-70. PubMed ID: 9781693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and structure-activity relationships of human renin inhibitors designed from angiotensinogen transition state.
    Iizuka K; Kamijo T; Harada H; Akahane K; Kubota T; Etoh Y; Shimaoka I; Tsubaki A; Murakami M; Yamaguchi T
    Chem Pharm Bull (Tokyo); 1990 Sep; 38(9):2487-93. PubMed ID: 2285979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli-based production of recombinant ovine angiotensinogen and its characterization as a renin substrate.
    Yamashita S; Shibata N; Boku-Ikeda A; Abe E; Inayama A; Yamaguchi T; Higuma A; Inagaki K; Tsuyuzaki T; Iwamoto S; Ohno S; Yokogawa T; Nishikawa K; Biswas KB; Nabi AH; Nakagawa T; Suzuki F; Ebihara A
    BMC Biotechnol; 2016 Apr; 16():33. PubMed ID: 27052373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical role for the histidine residues in the catalytic function of acyl-CoA:cholesterol acyltransferase catalysis: evidence for catalytic difference between ACAT1 and ACAT2.
    An S; Cho KH; Lee WS; Lee JO; Paik YK; Jeong TS
    FEBS Lett; 2006 May; 580(11):2741-9. PubMed ID: 16647063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.