BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 15942738)

  • 21. Saccade-based termination responses in macaque V1 and visual perception.
    Niemeyer JE; Paradiso MA
    Vis Neurosci; 2018 Jan; 35():E025. PubMed ID: 30511913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conditions that alter saccadic eye movement latencies and affect target choice to visual stimuli and to electrical stimulation of area V1 in the monkey.
    Schiller PH; Kendall GL; Slocum WM; Tehovnik EJ
    Vis Neurosci; 2008; 25(5-6):661-73. PubMed ID: 19079822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH; Tehovnik EJ
    Prog Brain Res; 2005; 149():157-71. PubMed ID: 16226583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Background changes delay information represented in macaque V1 neurons.
    Huang X; Paradiso MA
    J Neurophysiol; 2005 Dec; 94(6):4314-30. PubMed ID: 16107522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrical induction of vision.
    Tehovnik EJ; Slocum WM
    Neurosci Biobehav Rev; 2013 Jun; 37(5):803-18. PubMed ID: 23535445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cortical visual prostheses: from microstimulation to functional percept.
    Najarpour Foroushani A; Pack CC; Sawan M
    J Neural Eng; 2018 Apr; 15(2):021005. PubMed ID: 29350199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A physiological perspective on fixational eye movements.
    Snodderly DM
    Vision Res; 2016 Jan; 118():31-47. PubMed ID: 25536465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex.
    Leopold DA; Logothetis NK
    Exp Brain Res; 1998 Dec; 123(3):341-5. PubMed ID: 9860273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual receptive fields of neurons in primary visual cortex (V1) move in space with the eye movements of fixation.
    Gur M; Snodderly DM
    Vision Res; 1997 Feb; 37(3):257-65. PubMed ID: 9135859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of fast moving stimuli and saccadic eye movements on cell activity in visual areas V1 and V2 of behaving monkeys.
    Battaglini PP; Galletti C; Aicardi G; Squatrito S; Maioli MG
    Arch Ital Biol; 1986 May; 124(2):111-9. PubMed ID: 3753136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas.
    Kammer T; Puls K; Erb M; Grodd W
    Exp Brain Res; 2005 Jan; 160(1):129-40. PubMed ID: 15368087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coding of border ownership in monkey visual cortex.
    Zhou H; Friedman HS; von der Heydt R
    J Neurosci; 2000 Sep; 20(17):6594-611. PubMed ID: 10964965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple factors may influence the performance of a visual prosthesis based on intracortical microstimulation: nonhuman primate behavioural experimentation.
    Torab K; Davis TS; Warren DJ; House PA; Normann RA; Greger B
    J Neural Eng; 2011 Jun; 8(3):035001. PubMed ID: 21593550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contextual modulation in primary visual cortex of macaques.
    Rossi AF; Desimone R; Ungerleider LG
    J Neurosci; 2001 Mar; 21(5):1698-709. PubMed ID: 11222659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex.
    Boulay C; Paus T
    Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in visual receptive fields with microstimulation of frontal cortex.
    Armstrong KM; Fitzgerald JK; Moore T
    Neuron; 2006 Jun; 50(5):791-8. PubMed ID: 16731516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys.
    Kapadia MK; Ito M; Gilbert CD; Westheimer G
    Neuron; 1995 Oct; 15(4):843-56. PubMed ID: 7576633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Updating of the visual representation in monkey striate and extrastriate cortex during saccades.
    Nakamura K; Colby CL
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):4026-31. PubMed ID: 11904446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parameters of phosphene-inducing electric stimulation of the cat visual cortex via implanted surface and intracortical electrodes.
    Baziyan BK; Gordeev SA; Ivanova ME; Ortmann VV
    Bull Exp Biol Med; 2008 Jan; 145(1):4-6. PubMed ID: 19023989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.