BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15942756)

  • 1. Development of crop-specific transposable element (SINE) markers for studying gene flow from oilseed rape to wild radish.
    Prieto JL; Pouilly N; Jenczewski E; Deragon JM; Chèvre AM
    Theor Appl Genet; 2005 Aug; 111(3):446-55. PubMed ID: 15942756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Introgression in Weeds Depends on Initial Gene Location in the Crop:
    Adamczyk-Chauvat K; Delaunay S; Vannier A; François C; Thomas G; Eber F; Lodé M; Gilet M; Huteau V; Morice J; Nègre S; Falentin C; Coriton O; Darmency H; Alrustom B; Jenczewski E; Rousseau-Gueutin M; Chèvre AM
    Genetics; 2017 Jul; 206(3):1361-1372. PubMed ID: 28533439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybridization between oilseed rape (Brassica napus) and different populations and species of Raphanus.
    Ammitzbøll H; Bagger Jørgensen R
    Environ Biosafety Res; 2006; 5(1):3-13. PubMed ID: 16978570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and application of SINE multilocus and quantitative genetic markers to study oilseed rape (Brassica napus L.) crops.
    Allnutt TR; Roper K; Henry C
    J Agric Food Chem; 2008 Jan; 56(2):426-32. PubMed ID: 18092752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum).
    Gueritaine G; Sester M; Eber F; Chevre AM; Darmency H
    Mol Ecol; 2002 Aug; 11(8):1419-26. PubMed ID: 12144662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling gene flow between oilseed rape and wild radish. I. Evolution of chromosome structure.
    Chèvre AM; Adamczyk K; Eber F; Huteau V; Coriton O; Letanneur JC; Laredo C; Jenczewski E; Monod H
    Theor Appl Genet; 2007 Jan; 114(2):209-21. PubMed ID: 17091264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome discrimination in progeny of interspecific hybrids between Brassica napus and Raphanus raphanistrum.
    Benabdelmouna A; Guéritaine G; Abirached-Darmency M; Darmency H
    Genome; 2003 Jun; 46(3):469-72. PubMed ID: 12834064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition.
    Peterka H; Budahn H; Schrader O; Ahne R; Schütze W
    Theor Appl Genet; 2004 Jun; 109(1):30-41. PubMed ID: 14991110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives.
    Devos Y; De Schrijver A; Reheul D
    Environ Monit Assess; 2009 Feb; 149(1-4):303-22. PubMed ID: 18253849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Gene flow and its ecological risks of transgenic oilseed rape ( Brassica napus)].
    Tang G; Song W; Zhou W
    Ying Yong Sheng Tai Xue Bao; 2005 Dec; 16(12):2465-8. PubMed ID: 16515208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene flow from a large scale release of genetically modified herbicide tolerant and hybrid winter oilseed rape (Brassica napus L.).
    Degrieck I; Van Bockstaele E; De Loose M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):437-8. PubMed ID: 15954631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RGA- and RAPD-derived SCAR markers for a Brassica B-genome introgression conferring resistance to blackleg in oilseed rape.
    Saal B; Struss D
    Theor Appl Genet; 2005 Jul; 111(2):281-90. PubMed ID: 15887037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oilseed rape developmental expression resource: a resource for the investigation of gene expression dynamics during the floral transition in oilseed rape.
    Jones DM; Olson TSG; Pullen N; Wells R; Irwin JA; Morris RJ
    BMC Plant Biol; 2020 Jul; 20(1):344. PubMed ID: 32693783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow.
    Devos Y; Reheul D; de Schrijver A; Cors F; Moens W
    Environ Biosafety Res; 2004; 3(3):135-48. PubMed ID: 15901096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latent S alleles are widespread in cultivated self-compatible Brassica napus.
    Ekuere UU; Parkin IA; Bowman C; Marshall D; Lydiate DJ
    Genome; 2004 Apr; 47(2):257-65. PubMed ID: 15060578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evolution history of SINEs in Arabidopsis thaliana and Brassica oleracea: evidence for a high rate of SINE loss.
    Lenoir A; Pélissier T; Bousquet-Antonelli C; Deragon JM
    Cytogenet Genome Res; 2005; 110(1-4):441-7. PubMed ID: 16093696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.).
    Jeong YM; Chung WH; Mun JH; Kim N; Yu HJ
    Gene; 2014 Nov; 551(1):39-48. PubMed ID: 25151309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of stable inheritance of introgressed transgene from oilseed rape in wild radish.
    Al Mouemar A; Darmency H
    Environ Biosafety Res; 2004; 3(4):209-14. PubMed ID: 16028797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species.
    Mason AS; Snowdon RJ
    Plant Biol (Stuttg); 2016 Nov; 18(6):883-892. PubMed ID: 27063780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus).
    Rygulla W; Snowdon RJ; Friedt W; Happstadius I; Cheung WY; Chen D
    Phytopathology; 2008 Feb; 98(2):215-21. PubMed ID: 18943198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.