These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 15942756)
1. Development of crop-specific transposable element (SINE) markers for studying gene flow from oilseed rape to wild radish. Prieto JL; Pouilly N; Jenczewski E; Deragon JM; Chèvre AM Theor Appl Genet; 2005 Aug; 111(3):446-55. PubMed ID: 15942756 [TBL] [Abstract][Full Text] [Related]
2. Gene Introgression in Weeds Depends on Initial Gene Location in the Crop: Adamczyk-Chauvat K; Delaunay S; Vannier A; François C; Thomas G; Eber F; Lodé M; Gilet M; Huteau V; Morice J; Nègre S; Falentin C; Coriton O; Darmency H; Alrustom B; Jenczewski E; Rousseau-Gueutin M; Chèvre AM Genetics; 2017 Jul; 206(3):1361-1372. PubMed ID: 28533439 [TBL] [Abstract][Full Text] [Related]
3. Hybridization between oilseed rape (Brassica napus) and different populations and species of Raphanus. Ammitzbøll H; Bagger Jørgensen R Environ Biosafety Res; 2006; 5(1):3-13. PubMed ID: 16978570 [TBL] [Abstract][Full Text] [Related]
4. Development and application of SINE multilocus and quantitative genetic markers to study oilseed rape (Brassica napus L.) crops. Allnutt TR; Roper K; Henry C J Agric Food Chem; 2008 Jan; 56(2):426-32. PubMed ID: 18092752 [TBL] [Abstract][Full Text] [Related]
5. Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Gueritaine G; Sester M; Eber F; Chevre AM; Darmency H Mol Ecol; 2002 Aug; 11(8):1419-26. PubMed ID: 12144662 [TBL] [Abstract][Full Text] [Related]
6. Modelling gene flow between oilseed rape and wild radish. I. Evolution of chromosome structure. Chèvre AM; Adamczyk K; Eber F; Huteau V; Coriton O; Letanneur JC; Laredo C; Jenczewski E; Monod H Theor Appl Genet; 2007 Jan; 114(2):209-21. PubMed ID: 17091264 [TBL] [Abstract][Full Text] [Related]
7. Genome discrimination in progeny of interspecific hybrids between Brassica napus and Raphanus raphanistrum. Benabdelmouna A; Guéritaine G; Abirached-Darmency M; Darmency H Genome; 2003 Jun; 46(3):469-72. PubMed ID: 12834064 [TBL] [Abstract][Full Text] [Related]
8. Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition. Peterka H; Budahn H; Schrader O; Ahne R; Schütze W Theor Appl Genet; 2004 Jun; 109(1):30-41. PubMed ID: 14991110 [TBL] [Abstract][Full Text] [Related]
9. Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives. Devos Y; De Schrijver A; Reheul D Environ Monit Assess; 2009 Feb; 149(1-4):303-22. PubMed ID: 18253849 [TBL] [Abstract][Full Text] [Related]
10. [Gene flow and its ecological risks of transgenic oilseed rape ( Brassica napus)]. Tang G; Song W; Zhou W Ying Yong Sheng Tai Xue Bao; 2005 Dec; 16(12):2465-8. PubMed ID: 16515208 [TBL] [Abstract][Full Text] [Related]
11. Gene flow from a large scale release of genetically modified herbicide tolerant and hybrid winter oilseed rape (Brassica napus L.). Degrieck I; Van Bockstaele E; De Loose M Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):437-8. PubMed ID: 15954631 [TBL] [Abstract][Full Text] [Related]
12. RGA- and RAPD-derived SCAR markers for a Brassica B-genome introgression conferring resistance to blackleg in oilseed rape. Saal B; Struss D Theor Appl Genet; 2005 Jul; 111(2):281-90. PubMed ID: 15887037 [TBL] [Abstract][Full Text] [Related]
13. The oilseed rape developmental expression resource: a resource for the investigation of gene expression dynamics during the floral transition in oilseed rape. Jones DM; Olson TSG; Pullen N; Wells R; Irwin JA; Morris RJ BMC Plant Biol; 2020 Jul; 20(1):344. PubMed ID: 32693783 [TBL] [Abstract][Full Text] [Related]
14. Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow. Devos Y; Reheul D; de Schrijver A; Cors F; Moens W Environ Biosafety Res; 2004; 3(3):135-48. PubMed ID: 15901096 [TBL] [Abstract][Full Text] [Related]
15. Latent S alleles are widespread in cultivated self-compatible Brassica napus. Ekuere UU; Parkin IA; Bowman C; Marshall D; Lydiate DJ Genome; 2004 Apr; 47(2):257-65. PubMed ID: 15060578 [TBL] [Abstract][Full Text] [Related]
16. Comparative evolution history of SINEs in Arabidopsis thaliana and Brassica oleracea: evidence for a high rate of SINE loss. Lenoir A; Pélissier T; Bousquet-Antonelli C; Deragon JM Cytogenet Genome Res; 2005; 110(1-4):441-7. PubMed ID: 16093696 [TBL] [Abstract][Full Text] [Related]
17. De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.). Jeong YM; Chung WH; Mun JH; Kim N; Yu HJ Gene; 2014 Nov; 551(1):39-48. PubMed ID: 25151309 [TBL] [Abstract][Full Text] [Related]
18. Lack of stable inheritance of introgressed transgene from oilseed rape in wild radish. Al Mouemar A; Darmency H Environ Biosafety Res; 2004; 3(4):209-14. PubMed ID: 16028797 [TBL] [Abstract][Full Text] [Related]
19. Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species. Mason AS; Snowdon RJ Plant Biol (Stuttg); 2016 Nov; 18(6):883-892. PubMed ID: 27063780 [TBL] [Abstract][Full Text] [Related]
20. Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus). Rygulla W; Snowdon RJ; Friedt W; Happstadius I; Cheung WY; Chen D Phytopathology; 2008 Feb; 98(2):215-21. PubMed ID: 18943198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]