These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 15942871)
1. A new strain of Butyrivibrio fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid. Fukuda S; Furuya H; Suzuki Y; Asanuma N; Hino T J Gen Appl Microbiol; 2005 Apr; 51(2):105-13. PubMed ID: 15942871 [TBL] [Abstract][Full Text] [Related]
2. Isolation of a novel strain of Butyrivibrio fibrisolvens that isomerizes linoleic acid to conjugated linoleic acid without hydrogenation, and its utilization as a probiotic for animals. Fukuda S; Suzuki Y; Murai M; Asanuma N; Hino T J Appl Microbiol; 2006 Apr; 100(4):787-94. PubMed ID: 16553734 [TBL] [Abstract][Full Text] [Related]
3. Ricinoleic acid inhibits methanogenesis and fatty acid biohydrogenation in ruminal digesta from sheep and in bacterial cultures. Ramos Morales E; Mata Espinosa MA; McKain N; Wallace RJ J Anim Sci; 2012 Dec; 90(13):4943-50. PubMed ID: 22829608 [TBL] [Abstract][Full Text] [Related]
4. Dietary supplementation of Butyrivibrio fibrisolvens alters fatty acids of milk and rumen fluid in lactating goats. Shivani S; Srivastava A; Shandilya UK; Kale V; Tyagi AK J Sci Food Agric; 2016 Mar; 96(5):1716-22. PubMed ID: 26018875 [TBL] [Abstract][Full Text] [Related]
5. Purification and gene sequencing of conjugated linoleic acid reductase from a gastrointestinal bacterium, Butyrivibrio fibrisolvens. Fukuda S; Suzuki Y; Komori T; Kawamura K; Asanuma N; Hino T J Appl Microbiol; 2007 Aug; 103(2):365-71. PubMed ID: 17650196 [TBL] [Abstract][Full Text] [Related]
6. Effect of linoleic acid concentration on conjugated linoleic acid production by Butyrivibrio fibrisolvens A38. Kim YJ; Liu RH; Bond DR; Russell JB Appl Environ Microbiol; 2000 Dec; 66(12):5226-30. PubMed ID: 11097894 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria. McIntosh FM; Shingfield KJ; Devillard E; Russell WR; Wallace RJ Microbiology (Reading); 2009 Jan; 155(Pt 1):285-294. PubMed ID: 19118369 [TBL] [Abstract][Full Text] [Related]
8. Production of conjugated linoleic acid (CLA) by Bifidobacterium breve LMC520 and its compatibility with CLA-producing rumen bacteria. Park HG; Heo W; Kim SB; Kim HS; Bae GS; Chung SH; Seo HC; Kim YJ J Agric Food Chem; 2011 Feb; 59(3):984-8. PubMed ID: 21192703 [TBL] [Abstract][Full Text] [Related]
9. Partial inhibition of biohydrogenation of linoleic acid can increase the conjugated linoleic acid production of Butyrivibrio fibrisolvens A38. Kim YJ J Agric Food Chem; 2003 Jul; 51(15):4258-62. PubMed ID: 12848494 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of conjugated linoleic acids and 18 : 1 fatty acids by ruminal bacteria: products and mechanisms. McKain N; Shingfield KJ; Wallace RJ Microbiology (Reading); 2010 Feb; 156(Pt 2):579-588. PubMed ID: 19926650 [TBL] [Abstract][Full Text] [Related]
11. Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Wasowska I; Maia MR; Niedźwiedzka KM; Czauderna M; Ribeiro JM; Devillard E; Shingfield KJ; Wallace RJ Br J Nutr; 2006 Jun; 95(6):1199-211. PubMed ID: 16768845 [TBL] [Abstract][Full Text] [Related]
13. The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen. Heo W; Kim ET; Cho SD; Kim JH; Kwon SM; Jeong HY; Ki KS; Yoon HB; Ahn YD; Lee SS; Kim YJ Asian-Australas J Anim Sci; 2016 Mar; 29(3):365-71. PubMed ID: 26950867 [TBL] [Abstract][Full Text] [Related]
14. Studies on the production of conjugated linoleic acid from linoleic and vaccenic acids by mixed rumen protozoa. Or-Rashid MM; AlZahal O; McBride BW Appl Microbiol Biotechnol; 2008 Dec; 81(3):533-41. PubMed ID: 18797866 [TBL] [Abstract][Full Text] [Related]
16. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Devillard E; McIntosh FM; Newbold CJ; Wallace RJ Br J Nutr; 2006 Oct; 96(4):697-704. PubMed ID: 17010229 [TBL] [Abstract][Full Text] [Related]
17. Augmentation of vaccenate production and suppression of vaccenate biohydrogenation in cultures of mixed ruminal microbes. Fukuda S; Suzuki Y; Murai M; Asanuma N; Hino T J Dairy Sci; 2006 Mar; 89(3):1043-51. PubMed ID: 16507700 [TBL] [Abstract][Full Text] [Related]
18. Conjugated linoleic acid conversion by dairy bacteria cultured in MRS broth and buffalo milk. Van Nieuwenhove CP; Oliszewski R; González SN; Pérez Chaia AB Lett Appl Microbiol; 2007 May; 44(5):467-74. PubMed ID: 17451511 [TBL] [Abstract][Full Text] [Related]
19. Increased expression of a molecular chaperone GroEL in response to unsaturated fatty acids by the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. Devillard E; Andant N; John Wallace R FEMS Microbiol Lett; 2006 Sep; 262(2):244-8. PubMed ID: 16923082 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Maia MR; Chaudhary LC; Figueres L; Wallace RJ Antonie Van Leeuwenhoek; 2007 May; 91(4):303-14. PubMed ID: 17072533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]