BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 15943245)

  • 1. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost.
    Yang XE; Peng HY; Jiang LY; He ZL
    Int J Phytoremediation; 2005; 7(1):69-83. PubMed ID: 15943245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens.
    Peng HY; Yang XE; Tian SK
    J Zhejiang Univ Sci B; 2005 May; 6(5):311-8. PubMed ID: 15822140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium- contaminated soil by Zebrina pendula Schnizl.
    Chen L; Wang D; Long C; Cui ZX
    Sci Rep; 2019 Dec; 9(1):19817. PubMed ID: 31875012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of amendments on the bioavailability, transformation and accumulation of heavy metals by pakchoi cabbage in a multi-element contaminated soil.
    Li S; Sun X; Li S; Liu Y; Ma Q; Zhou W
    RSC Adv; 2021 Jan; 11(8):4395-4405. PubMed ID: 35424422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of organic and synthetic amendments for poplar phytomanagement in copper and lead-contaminated calcareous soil.
    Su J; Zeng Q; Li S; Wang R; Hu Y
    J Environ Manage; 2024 Mar; 355():120553. PubMed ID: 38471314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EDTA biodegradability and assisted phytoextraction efficiency in a large-scale field simulation: Is EDTA phasing out justified?
    Fine P; Engal O; Beriozkin A
    J Environ Manage; 2024 Feb; 353():120133. PubMed ID: 38308985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the use of industrial by-products to remediate a copper- and arsenic-contaminated soil.
    Lombi E; Hamon RE; Wieshammer G; McLaughlin MJ; McGrath SP
    J Environ Qual; 2004; 33(3):902-10. PubMed ID: 15224926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts.
    Inaba S; Takenaka C
    Environ Int; 2005 May; 31(4):603-8. PubMed ID: 15788200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions.
    Ginocchio R; Rodríguez PH; Badilla-Ohlbaum R; Allen HE; Lagos GE
    Environ Toxicol Chem; 2002 Aug; 21(8):1736-44. PubMed ID: 12152777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements.
    Garau M; Pinna MV; Nieddu M; Castaldi P; Garau G
    Plants (Basel); 2024 Jan; 13(2):. PubMed ID: 38256837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.
    Sessitsch A; Kuffner M; Kidd P; Vangronsveld J; Wenzel WW; Fallmann K; Puschenreiter M
    Soil Biol Biochem; 2013 May; 60(100):182-194. PubMed ID: 23645938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dieldrin accumulation, distribution in plant parts and phytoextraction potential for several plant species and Cucurbita pepo varieties.
    Affholder MC; Mench M; Gombert-Courvoisier S; Cohen GJV
    Sci Total Environ; 2024 Jun; 931():172968. PubMed ID: 38705310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoextraction of copper from copper waste rock by Tagetes sp.
    Roshanfar M; Farahani Z; Khanlarian M; Rashchi F; Motesharezadeh B
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):1026-1032. PubMed ID: 38030846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into regulation of proteome and polysaccharide in cell wall of Elsholtzia splendens in response to copper stress.
    Liu T; Shen C; Wang Y; Huang C; Shi J
    PLoS One; 2014; 9(10):e109573. PubMed ID: 25340800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Different Particle Sizes of Hydroxyapatite on the Distribution and Migration of Trace Elements (Copper and Cadmium) in a Smelter-Impacted Soil.
    Xu L; Xing X; Zhu Z; Cui H; Peng J; Li D; Ji M; Zhou J
    Bioinorg Chem Appl; 2021; 2021():2412646. PubMed ID: 34712312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum.
    Rafiq M; Shahid M; Abbas G; Shamshad S; Khalid S; Niazi NK; Dumat C
    Int J Phytoremediation; 2017 Jul; 19(7):662-669. PubMed ID: 28084804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoextraction of Cd-Contaminated Soils: Current Status and Future Challenges.
    Li JT; Baker AJ; Ye ZH; Wang HB; Shu WS
    Crit Rev Environ Sci Technol; 2012 Oct; 42(20):2113-2152. PubMed ID: 23335842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper dynamics in vineyard topsoils as affected by the supply of aerated compost tea: insights from a batch experiment.
    Eon P; Ouerdane L; Goupil A; Vidal A; Cornu JY
    Environ Pollut; 2024 Jun; ():124382. PubMed ID: 38897280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The identification of indigenous Cu and As metallophytes in the Lepanto Cu-Au Mine, Luzon, Philippines.
    Claveria RJR; Perez TR; Perez REC; Algo JLC; Robles PQ
    Environ Monit Assess; 2019 Feb; 191(3):185. PubMed ID: 30806800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies.
    Asgari Lajayer B; Khadem Moghadam N; Maghsoodi MR; Ghorbanpour M; Kariman K
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8468-8484. PubMed ID: 30712209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.