These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 15943272)

  • 1. Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths.
    Yliniemi S; West BR; Honkanen S
    Appl Opt; 2005 Jun; 44(16):3358-63. PubMed ID: 15943272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negligible birefringence in dual-mode ion-exchanged glass waveguide gratings.
    Yliniemi S; Albert J; Laronche A; Castro JM; Geraghty D; Honkanen S
    Appl Opt; 2006 Sep; 45(25):6602-6. PubMed ID: 16912802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buried ion-exchanged glass waveguides: burial-depth dependence on waveguide width.
    Madasamy P; West BR; Morrell MM; Geraghty DF; Honkanen S; Peyghambarian N
    Opt Lett; 2003 Jul; 28(13):1132-4. PubMed ID: 12879931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Birefringence control for ion-exchanged channel glass waveguides.
    Ayräs P; Conti GN; Honkanen S; Peyghambarian N
    Appl Opt; 1998 Dec; 37(36):8400-5. PubMed ID: 18301666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits.
    Fernandes LA; Grenier JR; Herman PR; Aitchison JS; Marques PV
    Opt Express; 2011 Sep; 19(19):18294-301. PubMed ID: 21935196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model for waveguide fabrication in glass by two-step ion exchange with ionic masking.
    Tervonen A; Honkanen S
    Opt Lett; 1988 Jan; 13(1):71-3. PubMed ID: 19741984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation of surface plasmon polaritons in a gold nanoslab on ion-exchanged waveguide technology.
    Tellez-Limon R; Blaize S; Gardillou F; Coello V; Salas-Montiel R
    Appl Opt; 2020 Jan; 59(2):572-578. PubMed ID: 32225343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modal birefringence-free lithium niobate waveguides.
    Schollhammer J; Baghban MA; Gallo K
    Opt Lett; 2017 Sep; 42(18):3578-3581. PubMed ID: 28914906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarisation independent silicon-on-insulator slot waveguides.
    Chen VH; Ong JR; Png CE
    Sci Rep; 2016 Nov; 6():37760. PubMed ID: 27898089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-loss erbium-doped ion-exchanged channel waveguides.
    Abouelleil MM; Ball GA; Nighan WL; Opal DJ
    Opt Lett; 1991 Dec; 16(24):1949-51. PubMed ID: 19784191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tin-diffused glass slab waveguides locally covered with tapered thin TiO2 films for application as a polarimetric interference sensor with an improved performance.
    Qi ZM; Honma I; Zhou H
    Anal Chem; 2005 Feb; 77(4):1163-6. PubMed ID: 15859000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of birefringence in thin-film waveguides by Rayleigh scattering.
    Janz S; Cheben P; Dayan H; Deakos R
    Opt Lett; 2003 Oct; 28(19):1778-80. PubMed ID: 14514098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralow birefringent glass waveguide fabricated by femtosecond laser direct writing.
    Wang YD; Li ZZ; Li YC; Duan YZ; Wang LC; Yu YH; Chen QD
    Opt Lett; 2023 Feb; 48(3):554-557. PubMed ID: 36723529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass.
    Liu Q; Gross S; Dekker P; Withford MJ; Steel MJ
    Opt Express; 2014 Nov; 22(23):28037-51. PubMed ID: 25402044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica.
    Fernandes LA; Grenier JR; Herman PR; Aitchison JS; Marques PV
    Opt Express; 2012 Oct; 20(22):24103-14. PubMed ID: 23187173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments.
    Lim ST; Png CE; Ong EA; Ang YL
    Opt Express; 2007 Sep; 15(18):11061-72. PubMed ID: 19547462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-dense dual-polarization waveguide superlattices on silicon.
    Xie Y; Yin Y; Zhang M; Liu L; Shi Y; Dai D
    Opt Express; 2020 Aug; 28(18):26774-26782. PubMed ID: 32906945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress-induced optical effects in Ag(+)-Na(+) ion-exchanged glass waveguides.
    Gonella F
    Opt Lett; 1992 Dec; 17(23):1667-9. PubMed ID: 19798278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the modal birefringence of single-mode K(+) ion-exchanged planar waveguides with polarimetric interferometry.
    Qi ZM; Itoh K; Murabayashi M
    Appl Opt; 2000 Nov; 39(31):5750-4. PubMed ID: 18354573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of buried channel waveguides in K(+)-Na(+) ion-exchanged glass and their application to notch filters.
    Mauchline IS; Stewart G
    Opt Lett; 1993 Nov; 18(21):1801-3. PubMed ID: 19829409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.