These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15943339)

  • 1. Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter.
    Hoge FE; Lyon PE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 2005 May; 44(14):2857-62. PubMed ID: 15943339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties.
    Lyon PE; Hoge FE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 2004 Nov; 43(31):5886-92. PubMed ID: 15540447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the ultraviolet radiation field in ocean waters from space-based measurements and full radiative-transfer calculations.
    Vasilkov AP; Herman JR; Ahmad Z; Kahru M; Mitchell BG
    Appl Opt; 2005 May; 44(14):2863-9. PubMed ID: 15943340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements.
    Hoge FE; Vodacek A; Swift RN; Yungel JK; Blough NV
    Appl Opt; 1995 Oct; 34(30):7032-8. PubMed ID: 21060564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results.
    Hoge FE; Lyon PE; Swift RN; Yungel JK; Abbott MR; Letelier RM; Esaias WE
    Appl Opt; 2003 May; 42(15):2767-71. PubMed ID: 12777014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of spectral excitation for measurements of fluorescence constituents in natural waters.
    Chekalyuk A; Hafez M
    Opt Express; 2013 Dec; 21(24):29255-68. PubMed ID: 24514478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence.
    Zhang Y; van Dijk MA; Liu M; Zhu G; Qin B
    Water Res; 2009 Oct; 43(18):4685-97. PubMed ID: 19665748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status.
    Hoge FE; Wright CW; Lyon PE; Swift RN; Yungel JK
    Appl Opt; 1999 Dec; 38(36):7431-41. PubMed ID: 18324297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aquatic laser fluorescence analyzer: field evaluation in the northern Gulf of Mexico.
    Chekalyuk A; Barnard A; Quigg A; Hafez M; Zhao Y
    Opt Express; 2014 Sep; 22(18):21641-56. PubMed ID: 25321542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Quantitative retrieval of phytoplankton pigment based on water inherent optical properties in Lake Taihu].
    Zhang YL; Qin BQ
    Huan Jing Ke Xue; 2006 Dec; 27(12):2439-44. PubMed ID: 17304837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using a compact airborne spectrographic imager to monitor phytoplankton biomass in a series of lakes in north Wales.
    Georg DG; Malthus TJ
    Sci Total Environ; 2001 Mar; 268(1-3):215-26. PubMed ID: 11315743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beam attenuation coefficient retrieval by inversion of airborne lidar-induced chromophoric dissolved organic matter fluorescence. I. Theory.
    Hoge FE
    Appl Opt; 2006 Apr; 45(10):2344-51. PubMed ID: 16608003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes.
    Lyu H; Li X; Wang Y; Jin Q; Cao K; Wang Q; Li Y
    Sci Total Environ; 2015 Oct; 530-531():373-382. PubMed ID: 26057542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach.
    Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V
    Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote Sensing of CDOM, CDOM Spectral Slope, and Dissolved Organic Carbon in the Global Ocean.
    Aurin D; Mannino A; Lary DJ
    Appl Sci (Basel); 2018; 8(12):2687. PubMed ID: 31032080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Investigation of quantitative detection of water quality using spectral fluorescence signature].
    He JH; Cheng YJ; Han YL; Zhang H; Yang T
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1870-4. PubMed ID: 18975822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oceanic inherent optical properties: proposed single laser lidar and retrieval theory.
    Hoge FE
    Appl Opt; 2005 Dec; 44(34):7483-6. PubMed ID: 16353822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters.
    Strömbeck N; Pierson DC
    Sci Total Environ; 2001 Mar; 268(1-3):123-37. PubMed ID: 11315736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: a case study for Tampa Bay.
    Le C; Hu C
    Opt Express; 2013 Aug; 21(16):18849-71. PubMed ID: 23938799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromophoric dissolved organic matter influence correction of algal concentration measurements using three-dimensional fluorescence spectra.
    Xiaoling Z; Gaofang Y; Nanjing Z; Ruifang Y; Jianguo L; Wenqing L
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():405-411. PubMed ID: 30530100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.