These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 15943435)

  • 1. Curvature induced L-defects in water conduction in carbon nanotubes.
    Zimmerli U; Gonnet PG; Walther JH; Koumoutsakos P
    Nano Lett; 2005 Jun; 5(6):1017-22. PubMed ID: 15943435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water and proton conduction through carbon nanotubes as models for biological channels.
    Zhu F; Schulten K
    Biophys J; 2003 Jul; 85(1):236-44. PubMed ID: 12829479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of filling on the compressibility of carbon nanotubes: predictions from molecular dynamics simulations.
    Trotter H; Phillips R; Ni B; Hu Y; Sinnott SB; Mikulski PT; Harrison JA
    J Nanosci Nanotechnol; 2005 Apr; 5(4):536-41. PubMed ID: 16004116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water alignment and proton conduction inside carbon nanotubes.
    Mann DJ; Halls MD
    Phys Rev Lett; 2003 May; 90(19):195503. PubMed ID: 12785955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of confined water inside narrow carbon nanotubes.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1796-9. PubMed ID: 17654942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating water transport through a charged SWCNT: a molecular dynamics simulation.
    Lu D
    Phys Chem Chem Phys; 2013 Sep; 15(34):14447-57. PubMed ID: 23884179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophoretic motion of water nanodroplets confined inside carbon nanotubes.
    Zambrano HA; Walther JH; Koumoutsakos P; Sbalzarini IF
    Nano Lett; 2009 Jan; 9(1):66-71. PubMed ID: 19105740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes.
    Shao Q; Zhou J; Lu L; Lu X; Zhu Y; Jiang S
    Nano Lett; 2009 Mar; 9(3):989-94. PubMed ID: 19206198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helicity and temperature effects on static properties of water molecules confined in modified carbon nanotubes.
    Huang LL; Shao Q; Lu LH; Lu XH; Zhang LZ; Wang J; Jiang SY
    Phys Chem Chem Phys; 2006 Sep; 8(33):3836-44. PubMed ID: 19817043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    ACS Nano; 2008 Jun; 2(6):1189-96. PubMed ID: 19206336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic gating of a nanometer water channel.
    Li J; Gong X; Lu H; Li D; Fang H; Zhou R
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):3687-92. PubMed ID: 17360413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi scale theoretical study of Li+ interaction with carbon nanotubes.
    Mpourmpakis G; Tylianakis E; Papanikolaou D; Froudakis GE
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3731-5. PubMed ID: 17256322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes.
    Won CY; Joseph S; Aluru NR
    J Chem Phys; 2006 Sep; 125(11):114701. PubMed ID: 16999495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of flexibility on hydrophobic behavior of nanotube water channels.
    Andreev S; Reichman D; Hummer G
    J Chem Phys; 2005 Nov; 123(19):194502. PubMed ID: 16321095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A possible role of the dipole moment of the catalyst droplet in nanotube growth, alignment, chirality, and characteristics.
    Mohammad SN
    Nanotechnology; 2012 Mar; 23(8):085701. PubMed ID: 22293434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster.
    Gómez-Gualdrón DA; Balbuena PB
    Nanotechnology; 2009 May; 20(21):215601. PubMed ID: 19423932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension.
    Tsyboulski DA; Bachilo SM; Kolomeisky AB; Weisman RB
    ACS Nano; 2008 Sep; 2(9):1770-6. PubMed ID: 19206415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton transport through water-filled carbon nanotubes.
    Dellago C; Naor MM; Hummer G
    Phys Rev Lett; 2003 Mar; 90(10):105902. PubMed ID: 12689010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating biomolecules with aqueous liquids confined within single-walled nanotubes.
    Xiu P; Zhou B; Qi W; Lu H; Tu Y; Fang H
    J Am Chem Soc; 2009 Mar; 131(8):2840-5. PubMed ID: 19206231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.