BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 15943818)

  • 1. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
    Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T
    FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman spectroscopic studies of cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Cohen JD; Bao W; Renganathan V; Subramaniam SS; Loehr TM
    Arch Biochem Biophys; 1997 May; 341(2):321-8. PubMed ID: 9169022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical oxidation of water by a cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Feng J; Himmel ME; Decker SR
    Biotechnol Lett; 2005 Apr; 27(8):555-60. PubMed ID: 15973489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Cameron MD; Aust SD
    Biochemistry; 2000 Nov; 39(44):13595-601. PubMed ID: 11063597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.
    Tasca F; Gorton L; Harreither W; Haltrich D; Ludwig R; Nöll G
    Anal Chem; 2009 Apr; 81(7):2791-8. PubMed ID: 19256522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase.
    Hallberg BM; Henriksson G; Pettersson G; Divne C
    J Mol Biol; 2002 Jan; 315(3):421-34. PubMed ID: 11786022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterization of a thermostable cellobiose dehydrogenase from Sporotrichum thermophile.
    Subramaniam SS; Nagalla SR; Renganathan V
    Arch Biochem Biophys; 1999 May; 365(2):223-30. PubMed ID: 10328816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli.
    Desriani ; Ferri S; Sode K
    Biotechnol Lett; 2010 Jun; 32(6):855-9. PubMed ID: 20140751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of inter-domain electron transfer in flavocytochrome cellobiose dehydrogenase from the white-rot fungus Phanerochaete chrysosporium.
    Igarashi K; Momohara I; Nishino T; Samejima M
    Biochem J; 2002 Jul; 365(Pt 2):521-6. PubMed ID: 11939907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of the heme axial ligands in the hemoflavoenzyme cellobiose dehydrogenase.
    Rotsaert FA; Li B; Renganathan V; Gold MH
    Arch Biochem Biophys; 2001 Jun; 390(2):206-14. PubMed ID: 11396923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the mediated electron transfer mechanism of cellobiose dehydrogenase at cytochrome c-modified gold electrodes.
    Sarauli D; Ludwig R; Haltrich D; Gorton L; Lisdat F
    Bioelectrochemistry; 2012 Oct; 87():9-14. PubMed ID: 21849263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of deglycosylation of cellobiose dehydrogenases on the enhancement of direct electron transfer with electrodes.
    Ortiz R; Matsumura H; Tasca F; Zahma K; Samejima M; Igarashi K; Ludwig R; Gorton L
    Anal Chem; 2012 Dec; 84(23):10315-23. PubMed ID: 23106311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes.
    Matsumura H; Ortiz R; Ludwig R; Igarashi K; Samejima M; Gorton L
    Langmuir; 2012 Jul; 28(29):10925-33. PubMed ID: 22746277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electron transfer--a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporium.
    Stoica L; Ruzgas T; Ludwig R; Haltrich D; Gorton L
    Langmuir; 2006 Dec; 22(25):10801-6. PubMed ID: 17129063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the flavin domain residues, His689 and Asn732, in the catalytic mechanism of cellobiose dehydrogenase from phanerochaete chrysosporium.
    Rotsaert FA; Renganathan V; Gold MH
    Biochemistry; 2003 Apr; 42(14):4049-56. PubMed ID: 12680758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(-) and comparison with basidiomycetous cellobiose dehydrogenases.
    Karapetyan KN; Fedorova TV; Vasil'chenko LG; Ludwig R; Haltrich D; Rabinovich ML
    J Biotechnol; 2006 Jan; 121(1):34-48. PubMed ID: 16112765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heme domain of cellobiose oxidoreductase: a one-electron reducing system.
    Mason MG; Nicholls P; Divne C; Hallberg BM; Henriksson G; Wilson MT
    Biochim Biophys Acta; 2003 Apr; 1604(1):47-54. PubMed ID: 12686420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the catalytic cycle of flavocytochrome b2.
    Daff S; Ingledew WJ; Reid GA; Chapman SK
    Biochemistry; 1996 May; 35(20):6345-50. PubMed ID: 8639579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor.
    Igarashi K; Verhagen MF; Samejima M; Schülein M; Eriksson KE; Nishino T
    J Biol Chem; 1999 Feb; 274(6):3338-44. PubMed ID: 9920875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.