These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 15945623)
1. Mechanisms of local and global molecular quantum gates and their implementation prospects. Troppmann U; de Vivie-Riedle R J Chem Phys; 2005 Apr; 122(15):154105. PubMed ID: 15945623 [TBL] [Abstract][Full Text] [Related]
2. Manganese pentacarbonyl bromide as candidate for a molecular qubit system operated in the infrared regime. Korff BM; Troppmann U; Kompa KL; de Vivie-Riedle R J Chem Phys; 2005 Dec; 123(24):244509. PubMed ID: 16396551 [TBL] [Abstract][Full Text] [Related]
3. Vibrational computing: simulation of a full adder by optimal control. Bomble L; Lauvergnat D; Remacle F; Desouter-Lecomte M J Chem Phys; 2008 Feb; 128(6):064110. PubMed ID: 18282031 [TBL] [Abstract][Full Text] [Related]
4. Vibrational molecular quantum computing: basis set independence and theoretical realization of the Deutsch-Jozsa algorithm. Tesch CM; de Vivie-Riedle R J Chem Phys; 2004 Dec; 121(24):12158-68. PubMed ID: 15606234 [TBL] [Abstract][Full Text] [Related]
5. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Plantenberg JH; de Groot PC; Harmans CJ; Mooij JE Nature; 2007 Jun; 447(7146):836-9. PubMed ID: 17568742 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of gates in a quantum computer based on vibrational eigenstates. Babikov D J Chem Phys; 2004 Oct; 121(16):7577-85. PubMed ID: 15485217 [TBL] [Abstract][Full Text] [Related]
7. Demonstration of an all-optical quantum controlled-NOT gate. O'Brien JL; Pryde GJ; White AG; Ralph TC; Branning D Nature; 2003 Nov; 426(6964):264-7. PubMed ID: 14628045 [TBL] [Abstract][Full Text] [Related]
8. Effect of diatomic molecular properties on binary laser pulse optimizations of quantum gate operations. Zaari RR; Brown A J Chem Phys; 2011 Jul; 135(4):044317. PubMed ID: 21806129 [TBL] [Abstract][Full Text] [Related]
9. Realization of the Cirac-Zoller controlled-NOT quantum gate. Schmidt-Kaler F; Häffner H; Riebe M; Gulde S; Lancaster GP; Deuschle T; Becher C; Roos CF; Eschner J; Blatt R Nature; 2003 Mar; 422(6930):408-11. PubMed ID: 12660777 [TBL] [Abstract][Full Text] [Related]
10. Quantum computing based on vibrational eigenstates: pulse area theorem analysis. Cheng T; Brown A J Chem Phys; 2006 Jan; 124(3):034111. PubMed ID: 16438571 [TBL] [Abstract][Full Text] [Related]
11. High fidelity quantum gates with vibrational qubits. Berrios E; Gruebele M; Shyshlov D; Wang L; Babikov D J Phys Chem A; 2012 Nov; 116(46):11347-54. PubMed ID: 22803619 [TBL] [Abstract][Full Text] [Related]
12. On the role of vibrational anharmonicities in a two-qubit system. Gu Y; Babikov D J Chem Phys; 2009 Jul; 131(3):034306. PubMed ID: 19624196 [TBL] [Abstract][Full Text] [Related]
13. Quantum gate operations using midinfrared binary shaped pulses on the rovibrational states of carbon monoxide. Zaari RR; Brown A J Chem Phys; 2010 Jan; 132(1):014307. PubMed ID: 20078161 [TBL] [Abstract][Full Text] [Related]
14. Realization of the CNOT quantum gate operation in six-dimensional ammonia using the OCT-MCTDH approach. Schröder M; Brown A J Chem Phys; 2009 Jul; 131(3):034101. PubMed ID: 19624175 [TBL] [Abstract][Full Text] [Related]