These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

760 related articles for article (PubMed ID: 15945667)

  • 1. Self-consistent solution of the Dyson equation for atoms and molecules within a conserving approximation.
    Dahlen NE; van Leeuwen R
    J Chem Phys; 2005 Apr; 122(16):164102. PubMed ID: 15945667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical equations for time-ordered Green's functions: from the Keldysh time-loop contour to equilibrium at finite and zero temperature.
    Ness H; Dash LK
    J Phys Condens Matter; 2012 Dec; 24(50):505601. PubMed ID: 23165158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculating molecular Rydberg states using the one-particle Green's function: application to HCO and C(NH2)3.
    Feuerbacher S; Santra R
    J Chem Phys; 2005 Nov; 123(19):194310. PubMed ID: 16321091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking the performance of density functional theory based Green's function formalism utilizing different self-energy models in calculating electronic transmission through molecular systems.
    Prociuk A; Van Kuiken B; Dunietz BD
    J Chem Phys; 2006 Nov; 125(20):204717. PubMed ID: 17144733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Levels of self-consistency in the GW approximation.
    Stan A; Dahlen NE; van Leeuwen R
    J Chem Phys; 2009 Mar; 130(11):114105. PubMed ID: 19317529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication: the description of strong correlation within self-consistent Green's function second-order perturbation theory.
    Phillips JJ; Zgid D
    J Chem Phys; 2014 Jun; 140(24):241101. PubMed ID: 24985609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of photoelectron spectra of molybdenum and tungsten complexes using Green's functions methods.
    Bayse CA; Ortwine KN
    J Phys Chem A; 2007 Aug; 111(32):7841-7. PubMed ID: 17636964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiclassical initial value approximation for Green's function.
    Kay KG
    J Chem Phys; 2010 Jun; 132(24):244110. PubMed ID: 20590184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extension of the fragment molecular orbital method with the many-particle Green's function.
    Yasuda K; Yamaki D
    J Chem Phys; 2006 Oct; 125(15):154101. PubMed ID: 17059233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The one-particle Green's function method in the Dirac-Hartree-Fock framework. I. Second-order valence ionization energies of Ne through Xe.
    Pernpointner M; Trofimov AB
    J Chem Phys; 2004 Mar; 120(9):4098-106. PubMed ID: 15268576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio electron propagators in molecules with strong electron-phonon interaction. I. Phonon averages.
    Dahnovsky Y
    J Chem Phys; 2007 Jun; 126(23):234111. PubMed ID: 17600408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient molecular orbital approach for self-consistent calculations of molecular junctions.
    Nakamura H; Yamashita K
    J Chem Phys; 2006 Nov; 125(19):194106. PubMed ID: 17129088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of charge transfer: rate processes formulated with nonequilibrium Green's functions.
    Yeganeh S; Ratner MA; Mujica V
    J Chem Phys; 2007 Apr; 126(16):161103. PubMed ID: 17477582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Krylov-space approach to the equilibrium and nonequilibrium single-particle Green's function.
    Balzer M; Gdaniec N; Potthoff M
    J Phys Condens Matter; 2012 Jan; 24(3):035603. PubMed ID: 22183787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient nonequilibrium Green's function formalism combined with density functional theory approach for calculating electron transport properties of molecular devices with quasi-one-dimensional electrodes.
    Qian Z; Li R; Hou S; Xue Z; Sanvito S
    J Chem Phys; 2007 Nov; 127(19):194710. PubMed ID: 18035901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation and use of a direct, partially integral-driven non-Dyson propagator method for molecular ionization.
    Storchi L; Vitillaro G; Tarantelli F
    J Comput Chem; 2009 Apr; 30(5):818-25. PubMed ID: 18727158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of molecular conduction. II. A Hartree-Fock approach to transmission probability.
    Shimazaki T; Maruyama H; Asai Y; Yamashita K
    J Chem Phys; 2005 Oct; 123(16):164111. PubMed ID: 16268685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation into the valence electronic structure of norbornene using electron momentum spectroscopy, Green's function, and density functional theories.
    Knippenberg S; Nixon KL; Mackenzie-Ross H; Brunger MJ; Wang F; Deleuze MS; François JP; Winkler DA
    J Phys Chem A; 2005 Oct; 109(41):9324-40. PubMed ID: 16833274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Koopmans' theorem in the ROHF method: canonical form for the Hartree-Fock Hamiltonian.
    Plakhutin BN; Gorelik EV; Breslavskaya NN
    J Chem Phys; 2006 Nov; 125(20):204110. PubMed ID: 17144693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.