These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15945721)

  • 1. Anion of the formic acid dimer as a model for intermolecular proton transfer induced by a pi* excess electron.
    Bachorz RA; Harańczyk M; Dabkowska I; Rak J; Gutowski M
    J Chem Phys; 2005 May; 122(20):204304. PubMed ID: 15945721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Barrier-free intermolecular proton transfer induced by excess electron attachment to the complex of alanine with uracil.
    Dabkowska I; Rak J; Gutowski M; Nilles JM; Stokes ST; Bowen KH
    J Chem Phys; 2004 Apr; 120(13):6064-71. PubMed ID: 15267490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled-cluster and explicitly correlated perturbation-theory calculations of the uracil anion.
    Bachorz RA; Klopper W; Gutowski M
    J Chem Phys; 2007 Feb; 126(8):085101. PubMed ID: 17343472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valence and dipole-bound anions of the most stable tautomers of guanine.
    Haranczyk M; Gutowski M
    J Am Chem Soc; 2005 Jan; 127(2):699-706. PubMed ID: 15643895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular proton transfer in anionic complexes of uracil with alcohols.
    Harańczyk M; Rak J; Gutowski M; Radisic D; Stokes ST; Bowen KH
    J Phys Chem B; 2005 Jul; 109(27):13383-91. PubMed ID: 16852671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectron spectrum of valence anions of uracil and first-principles calculations of excess electron binding energies.
    Bachorz RA; Klopper W; Gutowski M; Li X; Bowen KH
    J Chem Phys; 2008 Aug; 129(5):054309. PubMed ID: 18698902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio molecular orbital study of structures and energetics of Si(3)H(2), Si(3)H(2) (+), and Si(3)H(2) (-).
    Ikuta S; Wakamatsu S
    J Chem Phys; 2004 Jun; 120(23):11071-81. PubMed ID: 15268137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of very rare tautomers of 1-methylcytosine by an excess electron.
    Harańczyk M; Rak J; Gutowski M
    J Phys Chem A; 2005 Dec; 109(50):11495-503. PubMed ID: 16354040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio molecular-orbital study of structures and energetics of Si3H3 neutral and anion.
    Saitoh T; Naoe T; Ikuta S
    J Chem Phys; 2005 May; 122(20):204314. PubMed ID: 15945731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the unusual stability of valence anions of thymine based on very rare tautomers: A computational study.
    Mazurkiewicz K; Bachorz RA; Gutowski M; Rak J
    J Phys Chem B; 2006 Dec; 110(48):24696-707. PubMed ID: 17134233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative stability of planar versus double-ring tubular isomers of neutral and anionic boron cluster B20 and B20-.
    An W; Bulusu S; Gao Y; Zeng XC
    J Chem Phys; 2006 Apr; 124(15):154310. PubMed ID: 16674229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies.
    Hesselmann A; Jansen G; Schütz M
    J Chem Phys; 2005 Jan; 122(1):14103. PubMed ID: 15638638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron solvation in water-ammonia mixed clusters: Structure, energetics, and the nature of localization states of the excess electron.
    Pratihar S; Chandra A
    J Chem Phys; 2007 Jun; 126(23):234510. PubMed ID: 17600428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A benchmark theoretical study of the electron affinities of benzene and linear acenes.
    Hajgató B; Deleuze MS; Tozer DJ; De Proft F
    J Chem Phys; 2008 Aug; 129(8):084308. PubMed ID: 19044824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valence anions in complexes of adenine and 9-methyladenine with formic acid: stabilization by intermolecular proton transfer.
    Mazurkiewicz K; Harańczyk M; Gutowski M; Rak J; Radisic D; Eustis SN; Wang D; Bowen KH
    J Am Chem Soc; 2007 Feb; 129(5):1216-24. PubMed ID: 17263404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of excess electron and one water molecule on relative stability of the canonical and zwitterionic tautomers of glycine.
    Haranczyk M; Gutowski M
    J Chem Phys; 2008 Mar; 128(12):125101. PubMed ID: 18376976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron attachment induced proton transfer in a DNA nucleoside pair: 2'-deoxyguanosine-2'-deoxycytidine.
    Gu J; Xie Y; Schaefer HF
    J Chem Phys; 2007 Oct; 127(15):155107. PubMed ID: 17949223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.
    Pathak AK; Mukherjee T; Maity DK
    J Chem Phys; 2007 Jul; 127(4):044304. PubMed ID: 17672687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionization-induced proton transfer in model DNA base pairs: a theoretical study of the radical ions of the 7-azaindole dimer.
    Chen HY; Chao I
    Chemphyschem; 2004 Dec; 5(12):1855-63. PubMed ID: 15648133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.