These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 15945740)

  • 1. Origin of methyl torsional barrier in 1-methyl-2-(1H)-pyridone.
    Pradhan B; Singh BP; Nandi CK; Chakraborty T; Kundu T
    J Chem Phys; 2005 May; 122(20):204323. PubMed ID: 15945740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic studies on methyl torsional behavior in 1-methyl-2(1H)-pyridone, 1-methyl-2(1H)-pyridinimine, and 3-methyl-2(1H)-pyridone. I. Excited state.
    Sinha RK; Pradhan B; Wategaonkar S; Singh BP; Kundu T
    J Chem Phys; 2007 Mar; 126(11):114312. PubMed ID: 17381211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of methyl torsional barrier in 1-methyl-2(1H)-pyridinimine and 3-methyl-2(1H)-pyridone: II. Ground state.
    Pradhan B; Sinha RK; Singh BP; Kundu T
    J Chem Phys; 2007 Mar; 126(11):114313. PubMed ID: 17381212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of threefold symmetric torsional potential of methyl group in 4-methylstyrene.
    Sinha RK; Pradhan B; Singh BP; Kundu T; Biswas P; Chakraborty T
    J Chem Phys; 2006 Apr; 124(14):144316. PubMed ID: 16626205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jet-cooled vibronic spectroscopy and asymmetric torsional potentials of phenylcyclopentene.
    Newby JJ; Müller CW; Liu CP; Zwier TS
    Phys Chem Chem Phys; 2009 Oct; 11(37):8330-41. PubMed ID: 19756289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jet-cooled vibronic spectroscopy of potential intermediates along the pathway to PAH: phenylcyclopenta-1,3-diene.
    Newby JJ; Liu CP; Müller CW; Zwier TS
    Phys Chem Chem Phys; 2009 Oct; 11(37):8316-29. PubMed ID: 19756288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic investigations and potential energy surfaces of the ground and excited electronic states of 1,3-benzodioxan.
    McCann K; Wagner M; Guerra A; Coronado P; Villarreal JR; Choo J; Kim S; Laane J
    J Chem Phys; 2009 Jul; 131(4):044302. PubMed ID: 19655862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser induced fluorescence and resonant two-photon ionization spectroscopy of jet-cooled 1-hydroxy-9,10-anthraquinone.
    Cho SH; Huh H; Kim HM; Kim CI; Kim NJ; Kim SK
    J Chem Phys; 2005 Jan; 122(3):34304. PubMed ID: 15740198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation dynamics of thiolactic acid at 193 nm: detection of the nascent OH product by laser-induced fluorescence.
    Pushpa KK; Upadhyaya HP; Kumar A; Naik PD; Bajaj P; Mittal JP
    J Chem Phys; 2004 Apr; 120(15):6964-72. PubMed ID: 15267595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal rotation of methyl group in electronically excited o- and m-ethynyltoluene: new correlation between the Hammett substituent constant σm and rotational barrier change.
    Tanaka S; Okuyama K
    J Chem Phys; 2011 Feb; 134(8):084311. PubMed ID: 21361543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence and ultraviolet absorption spectra and structure of coumaran and its ring-puckering potential energy function in the S1(pi,pi*) excited state.
    Yang J; Wagner M; Okuyama K; Morris K; Arp Z; Choo J; Meinander N; Kwon O; Laane J
    J Chem Phys; 2006 Jul; 125(3):34308. PubMed ID: 16863351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced fluorescence and single vibronic level emission spectroscopy of chiral (R)-1-aminoindan and some of its clusters in a supersonic jet.
    Barbu-Debus KL; Lahmani F; Zehnacker-Rentien A; Guchhait N
    Phys Chem Chem Phys; 2006 Feb; 8(8):1001-6. PubMed ID: 16482343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution infrared spectroscopy in the 1,200-1,300 cm(-1) region and accurate theoretical estimates for the structure and ring-puckering barrier of perfluorocyclobutane.
    Blake TA; Glendening ED; Sams RL; Sharpe SW; Xantheas SS
    J Phys Chem A; 2007 Nov; 111(44):11328-41. PubMed ID: 17616110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jet spectroscopy of arylmethyl radicals in the visible region: assignment of low-frequency vibrational modes in diphenylmethyl and chlorodiphenylmethyl radicals.
    Tsuge M; Hamatani S; Kawai A; Tsuji K; Shibuya K
    Phys Chem Chem Phys; 2006 Jan; 8(2):256-63. PubMed ID: 16482268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence and ultraviolet absorption spectra, and the structure and vibrations of 1,2,3,4-tetrahydronaphthalene in its S1(pi,pi*) state.
    Yang J; Wagner M; Laane J
    J Phys Chem A; 2007 Aug; 111(34):8429-38. PubMed ID: 17685499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CH3 internal rotation in the S0 and S1 states of 9-methylanthracene.
    Baba M; Mori K; Saito M; Kowaka Y; Noma Y; Kasahara S; Yamanaka T; Okuyama K; Ishimoto T; Nagashima U
    J Phys Chem A; 2009 Mar; 113(11):2366-71. PubMed ID: 19231826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopy and photophysics of 1,4-bis(phenylethynyl)benzene: effects of ring torsion and dark pi sigma* state.
    Fujiwara T; Zgierski MZ; Lim EC
    J Phys Chem A; 2008 May; 112(21):4736-41. PubMed ID: 18457377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal rotational motion of the chloromethyl group of the jet-cooled benzyl chloride molecule.
    Matsumoto R; Suzuki T; Ichimura T
    J Phys Chem A; 2005 Apr; 109(15):3331-6. PubMed ID: 16833667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational stability, structural parameters and vibrational assignment from variable temperature infrared spectra of krypton solutions and ab initio calculations of ethylisothiocyanate.
    Durig JR; Zheng C
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):783-95. PubMed ID: 17433767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio and NBO studies of methyl internal rotation in 1-methyl-2(1H)-quinolinone: effect of aromatic substitution to 1-methyl-2(1H)-pyridone.
    Sinha RK
    J Mol Model; 2020 Apr; 26(5):92. PubMed ID: 32246205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.