These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15945773)

  • 1. Polymer-centered theory in comparison with surfactant-centered theory: a lattice Monte Carlo study.
    Behjatmanesh-Ardakani R
    J Chem Phys; 2005 May; 122(20):204903. PubMed ID: 15945773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of interaction energies in the behavior of mixed surfactant systems: a lattice Monte Carlo simulation.
    Poorgholami-Bejarpasi N; Hashemianzadeh M; Mousavi-Khoshdel SM; Sohrabi B
    Langmuir; 2010 Sep; 26(17):13786-96. PubMed ID: 20672817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of mixed lennard-jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Nov; 23(23):11580-6. PubMed ID: 17918866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular-thermodynamic theory of micellization of pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Apr; 22(8):3547-59. PubMed ID: 16584226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analogy in the adsorption of random copolymers and homopolymers at solid-liquid interface: a Monte Carlo simulation study.
    Sun L; Peng C; Liu H; Hu Y; Jiang J
    J Chem Phys; 2007 Mar; 126(9):094905. PubMed ID: 17362125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation of ionic surfactants to block copolymer assemblies: a simple fluorescence spectral study.
    Kumbhakar M
    J Phys Chem B; 2007 Dec; 111(51):14250-5. PubMed ID: 18052153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disjoining pressure of thin films stabilized by nonionic surfactants.
    Danov KD; Ivanov IB; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Dec; 128-130():185-215. PubMed ID: 17207762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase behavior and structure formation in linear multiblock copolymer solutions by Monte Carlo simulation.
    Gindy ME; Prud'homme RK; Panagiotopoulos AZ
    J Chem Phys; 2008 Apr; 128(16):164906. PubMed ID: 18447499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodology of predicting approximate shapes and size distribution of micelles: illustration for simple models.
    Kinoshita M; Sugai Y
    J Comput Chem; 2002 Nov; 23(15):1445-55. PubMed ID: 12370946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations for amphiphilic aggregation near a water phase transition.
    Heinzelmann G; Figueiredo W; Girardi M
    J Chem Phys; 2009 Oct; 131(14):144901. PubMed ID: 19831463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexation between a macromolecule and an amphiphile by Monte Carlo technique.
    Gharibi H; Behjatmanesh-Ardakani R; Hashemianzadeh M; Mousavi-Khoshdel M
    J Phys Chem B; 2006 Jul; 110(27):13547-53. PubMed ID: 16821881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of sodium dodecyl sulfate and hexaethylene glycol mono-n-dodecyl ether to the block copolymer L64: electromotive force, microcalorimetry, surface tension, and small angle neutron scattering investigations of mixed micelles and polymer/micellar surfactant complexes.
    Couderc-Azouani S; Sidhu J; Thurn T; Xu R; Bloor DM; Penfold J; Holzwarth JF; Wyn-Jones E
    Langmuir; 2005 Oct; 21(22):10197-208. PubMed ID: 16229545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of an anionic surfactant with poly(oxyalkylene) copolymers in aqueous solution.
    Kelarakis A; Chaibundit C; Krysmann MJ; Havredaki V; Viras K; Hamley IW
    J Colloid Interface Sci; 2009 Feb; 330(1):67-72. PubMed ID: 18977495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure-induced formation of diblock copolymer "micelles" in supercritical fluids. A combined study by small angle scattering experiments and mean-field theory. I. The critical micellization density concept.
    Raudino A; Lo Celso F; Triolo A; Triolo R
    J Chem Phys; 2004 Feb; 120(7):3489-98. PubMed ID: 15268507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase behavior in model homopolymer/CO2 and surfactant/CO2 systems: discontinuous molecular dynamics simulations.
    Li Z; Hall CK
    Langmuir; 2004 Sep; 20(20):8559-68. PubMed ID: 15379475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of amphiphilic nanoparticle self-assembly.
    Davis JR; Panagiotopoulos AZ
    J Chem Phys; 2008 Nov; 129(19):194706. PubMed ID: 19026080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.