These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 1594621)

  • 1. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs.
    te Riele H; Maandag ER; Berns A
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):5128-32. PubMed ID: 1594621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting of the creatine kinase M gene in embryonic stem cells using isogenic and nonisogenic vectors.
    van Deursen J; Wieringa B
    Nucleic Acids Res; 1992 Aug; 20(15):3815-20. PubMed ID: 1508665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Murine inter-strain polymorphisms alter gene targeting frequencies at the mu opioid receptor locus in embryonic stem cells.
    Zhou L; Rowley DL; Mi QS; Sefcovic N; Matthes HW; Kieffer BL; Donovan DM
    Mamm Genome; 2001 Oct; 12(10):772-8. PubMed ID: 11668392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced selection for homologous-recombinant embryonic stem cell clones with a neomycin phosphotransferase gene in antisense orientation.
    Skryabin BV; Schmauss C
    Transgenic Res; 1997 Jan; 6(1):27-35. PubMed ID: 9032975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases.
    Sommer D; Peters A; Wirtz T; Mai M; Ackermann J; Thabet Y; Schmidt J; Weighardt H; Wunderlich FT; Degen J; Schultze JL; Beyer M
    Nat Commun; 2014; 5():3045. PubMed ID: 24413636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles.
    Testa G; Zhang Y; Vintersten K; Benes V; Pijnappel WW; Chambers I; Smith AJ; Smith AG; Stewart AF
    Nat Biotechnol; 2003 Apr; 21(4):443-7. PubMed ID: 12627172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells.
    Fukushige S; Sauer B
    Proc Natl Acad Sci U S A; 1992 Sep; 89(17):7905-9. PubMed ID: 1518811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene replacement with one-sided homologous recombination.
    Berinstein N; Pennell N; Ottaway CA; Shulman MJ
    Mol Cell Biol; 1992 Jan; 12(1):360-7. PubMed ID: 1729610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology.
    Babinet C; Cohen-Tannoudji M
    An Acad Bras Cienc; 2001 Sep; 73(3):365-83. PubMed ID: 11600898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene.
    Yagi T; Nada S; Watanabe N; Tamemoto H; Kohmura N; Ikawa Y; Aizawa S
    Anal Biochem; 1993 Oct; 214(1):77-86. PubMed ID: 8250258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCR-based gene targeting of the inducible nitric oxide synthase (NOS2) locus in murine ES cells, a new and more cost-effective approach.
    Randolph DA; Verbsky JW; Yang L; Fang Y; Hakem R; Fields LE
    Transgenic Res; 1996 Nov; 5(6):413-20. PubMed ID: 8840524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-efficiency Cre/loxP-based system for construction of adenoviral vectors.
    Ng P; Parks RJ; Cummings DT; Evelegh CM; Sankar U; Graham FL
    Hum Gene Ther; 1999 Nov; 10(16):2667-72. PubMed ID: 10566894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restriction enzymes increase efficiencies of illegitimate DNA integration but decrease homologous integration in mammalian cells.
    Manivasakam P; Aubrecht J; Sidhom S; Schiestl RH
    Nucleic Acids Res; 2001 Dec; 29(23):4826-33. PubMed ID: 11726692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The length of homology required for gene targeting in embryonic stem cells.
    Hasty P; Rivera-Pérez J; Bradley A
    Mol Cell Biol; 1991 Nov; 11(11):5586-91. PubMed ID: 1656234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas-induced double-strand breaks boost the frequency of gene replacements for humanizing the mouse Cnr2 gene.
    Gennequin B; Otte DM; Zimmer A
    Biochem Biophys Res Commun; 2013 Nov; 441(4):815-9. PubMed ID: 24211574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted mutation of the Hprt gene in mouse embryonic stem cells.
    Doetschman T; Maeda N; Smithies O
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8583-7. PubMed ID: 3186749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene targeting and site-specific recombination in mouse ES cells.
    Anastassiadis K; Schnütgen F; von Melchner H; Stewart AF
    Methods Enzymol; 2013; 533():133-55. PubMed ID: 24182921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted integration of the Ren-1D locus in mouse embryonic stem cells.
    Miller CC; McPheat JC; Potts WJ
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):5020-4. PubMed ID: 1594609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplified generation of targeting constructs using ET recombination.
    Angrand PO; Daigle N; van der Hoeven F; Schöler HR; Stewart AF
    Nucleic Acids Res; 1999 Sep; 27(17):e16. PubMed ID: 10446259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells.
    Shy BR; MacDougall MS; Clarke R; Merrill BJ
    Nucleic Acids Res; 2016 Sep; 44(16):7997-8010. PubMed ID: 27484482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.