BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 15946288)

  • 1. Bioaugmentation for bioremediation: the challenge of strain selection.
    Thompson IP; van der Gast CJ; Ciric L; Singer AC
    Environ Microbiol; 2005 Jul; 7(7):909-15. PubMed ID: 15946288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria.
    Maphosa F; de Vos WM; Smidt H
    Trends Biotechnol; 2010 Jun; 28(6):308-16. PubMed ID: 20434786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative approaches for assessing the ecological sustainability of in situ bioremediation.
    Pandey J; Chauhan A; Jain RK
    FEMS Microbiol Rev; 2009 Mar; 33(2):324-75. PubMed ID: 19178567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives and vision for strain selection in bioaugmentation.
    Singer AC; van der Gast CJ; Thompson IP
    Trends Biotechnol; 2005 Feb; 23(2):74-7. PubMed ID: 15661343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecology and evolution of microbial populations for bioremediation.
    Liu S; Suflita JM
    Trends Biotechnol; 1993 Aug; 11(8):344-52. PubMed ID: 7764181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unlocking the 'microbial black box' using RNA-based stable isotope probing technologies.
    Whiteley AS; Manefield M; Lueders T
    Curr Opin Biotechnol; 2006 Feb; 17(1):67-71. PubMed ID: 16337784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.
    Alisi C; Musella R; Tasso F; Ubaldi C; Manzo S; Cremisini C; Sprocati AR
    Sci Total Environ; 2009 Apr; 407(8):3024-32. PubMed ID: 19201450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of molecular techniques in bioremediation.
    PÅ‚aza G; Ulfig K; Hazen TC; Brigmon RL
    Acta Microbiol Pol; 2001; 50(3-4):205-18. PubMed ID: 11930989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of stable isotope probing techniques in bioreactor and field studies on bioremediation.
    Madsen EL
    Curr Opin Biotechnol; 2006 Feb; 17(1):92-7. PubMed ID: 16378724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The design of long-term effective uranium bioremediation strategy using a community metabolic model.
    Zhuang K; Ma E; Lovley DR; Mahadevan R
    Biotechnol Bioeng; 2012 Oct; 109(10):2475-83. PubMed ID: 22510989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes.
    Stenuit B; Eyers L; Schuler L; Agathos SN; George I
    Biotechnol Adv; 2008; 26(6):561-75. PubMed ID: 18725284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in molecular and "-omics" technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites.
    Desai C; Pathak H; Madamwar D
    Bioresour Technol; 2010 Mar; 101(6):1558-69. PubMed ID: 19962886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in molecular techniques for the detection of phylogenetic markers and functional genes in microbial communities.
    Lau SC; Liu WT
    FEMS Microbiol Lett; 2007 Oct; 275(2):183-90. PubMed ID: 17651392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils.
    Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG
    J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica.
    Stallwood B; Shears J; Williams PA; Hughes KA
    J Appl Microbiol; 2005; 99(4):794-802. PubMed ID: 16162230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes.
    Tyagi M; da Fonseca MM; de Carvalho CC
    Biodegradation; 2011 Apr; 22(2):231-41. PubMed ID: 20680666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes.
    Friedrich MW
    Curr Opin Biotechnol; 2006 Feb; 17(1):59-66. PubMed ID: 16376070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation.
    Penny C; Vuilleumier S; Bringel F
    FEMS Microbiol Ecol; 2010 Nov; 74(2):257-75. PubMed ID: 20695893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of metal bioremediation by use of microbial surfactants.
    Singh P; Cameotra SS
    Biochem Biophys Res Commun; 2004 Jun; 319(2):291-7. PubMed ID: 15178405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of the methods for the characterization of microbial consortia and communities.
    Spiegelman D; Whissell G; Greer CW
    Can J Microbiol; 2005 May; 51(5):355-86. PubMed ID: 16088332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.